Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 20(9): e3001789, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36178983

RESUMO

Long-term memory formation involves the reorganization of brain circuits, termed system consolidation. Whether and how a prior fear experience influences system consolidation of new memories is poorly understood. In rats, we found that prior auditory fear learning allows the secondary auditory cortex to immediately encode new auditory memories, with these new memories purely requiring the activation of cellular mechanisms of synaptic consolidation within secondary auditory cortex. Similar results were obtained in the anterior cingulate cortex for contextual fear memories. Moreover, prior learning enabled connections from these cortices to the basolateral amygdala (BLA) to support recent memory retention. We propose that the reorganization of circuits that characterizes system consolidation occurs only in the first instance that an event is learned, subsequently allowing the immediate assimilation of new analogous events in final storage sites.


Assuntos
Córtex Auditivo , Complexo Nuclear Basolateral da Amígdala , Animais , Córtex Auditivo/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Medo/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Ratos
2.
J Neurosci ; 43(50): 8744-8755, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37857485

RESUMO

Mammalian target of rapamycin (mTOR) pathway has emerged as a key molecular mechanism underlying memory processes. Although mTOR inhibition is known to block memory processes, it remains elusive whether and how an enhancement of mTOR signaling may improve memory processes. Here we found in male mice that the administration of VO-OHpic, an inhibitor of the phosphatase and tensin homolog (PTEN) that negatively modulates AKT-mTOR pathway, enhanced auditory fear memory for days and weeks, while it left short-term memory unchanged. Memory enhancement was associated with a long-lasting increase in immature-type dendritic spines of pyramidal neurons into the auditory cortex. The persistence of spine remodeling over time arose by the interplay between PTEN inhibition and memory processes, as VO-OHpic induced only a transient immature spine growth in the somatosensory cortex, a region not involved in long-term auditory memory. Both the potentiation of fear memories and increase in immature spines were hampered by rapamycin, a selective inhibitor of mTORC1. These data revealed that memory can be potentiated over time by the administration of a selective PTEN inhibitor. In addition to disclosing new information on the cellular mechanisms underlying long-term memory maintenance, our study provides new insights on the molecular processes that aid enhancing memories over time.SIGNIFICANCE STATEMENT The neuronal mechanisms that may help improve the maintenance of long-term memories are still elusive. The inhibition of mammalian-target of rapamycin (mTOR) signaling shows that this pathway plays a crucial role in synaptic plasticity and memory formation. However, whether its activation may strengthen long-term memory storage is unclear. We assessed the consequences of positive modulation of AKT-mTOR pathway obtained by VO-OHpic administration, a phosphatase and tensin homolog inhibitor, on memory retention and underlying synaptic modifications. We found that mTOR activation greatly enhanced memory maintenance for weeks by producing a long-lasting increase of immature-type dendritic spines in pyramidal neurons of the auditory cortex. These results offer new insights on the cellular and molecular mechanisms that can aid enhancing memories over time.


Assuntos
Córtex Auditivo , Proteínas Proto-Oncogênicas c-akt , Masculino , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Córtex Auditivo/metabolismo , Espinhas Dendríticas/metabolismo , Tensinas/metabolismo , Memória de Longo Prazo/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Memória de Curto Prazo/fisiologia , Sirolimo/farmacologia , Medo/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Mamíferos
3.
Cereb Cortex ; 31(12): 5381-5395, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34145441

RESUMO

Traumatic memories may become less precise over time and lead to the development of fear responses to novel stimuli, a process referred to as time-dependent fear generalization. The conditions that cause the growth of fear generalization over time are poorly understood. Here, we found that, in male rats, the level of discrimination at the early time point contributes to determining whether fear generalization will develop with the passage of time or not, suggesting a link between the precision of recent memory and the stability of remote engrams. We also found that the expression of insulin-like growth factor 2 receptor in layer 2/3 of the auditory cortex is linked to the precision of recent memories and to the stability of remote engrams and the development of fear generalization over time. These findings provide new insights on the neural mechanisms that underlie the time-dependent development of fear generalization that may occur over time after a traumatic event.


Assuntos
Córtex Auditivo , Animais , Córtex Auditivo/fisiologia , Medo/fisiologia , Masculino , Memória/fisiologia , Memória de Longo Prazo , Ratos , Receptor IGF Tipo 2
4.
Development ; 144(6): 1035-1044, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28292847

RESUMO

Human umbilical cord blood (CB) has attracted much attention as a reservoir for functional hematopoietic stem and progenitor cells, and, recently, as a source of blood-borne fibroblasts (CB-BFs). Previously, we demonstrated that bone marrow stromal cell (BMSC) and CB-BF pellet cultures make cartilage in vitro Furthermore, upon in vivo transplantation, BMSC pellets remodelled into miniature bone/marrow organoids. Using this in vivo model, we asked whether CB-BF populations that express characteristics of the hematopoietic stem cell (HSC) niche contain precursors that reform the niche. CB ossicles were regularly observed upon transplantation. Compared with BM ossicles, CB ossicles showed a predominance of red marrow over yellow marrow, as demonstrated by histomorphological analyses and the number of hematopoietic cells isolated within ossicles. Marrow cavities from CB and BM ossicles included donor-derived CD146-expressing osteoprogenitors and host-derived mature hematopoietic cells, clonogenic lineage-committed progenitors and HSCs. Furthermore, human CD34+ cells transplanted into ossicle-bearing mice engrafted and maintained human HSCs in the niche. Our data indicate that CB-BFs are able to recapitulate the conditions by which the bone marrow microenvironment is formed and establish complete HSC niches, which are functionally supportive of hematopoietic tissue.


Assuntos
Células da Medula Óssea/citologia , Sangue Fetal/citologia , Fibroblastos/citologia , Células-Tronco Hematopoéticas/citologia , Organoides/citologia , Nicho de Células-Tronco , Adulto , Compartimento Celular , Criança , Fibroblastos/transplante , Transplante de Células-Tronco Hematopoéticas , Homeostase , Humanos , Nicho de Células-Tronco/genética , Células Estromais/citologia
5.
J Neurosci ; 38(39): 8313-8328, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30093537

RESUMO

The medial prefrontal cortex and the basolateral amygdala (BLA) are essential for discriminating between harmful and safe stimuli. The primary auditory cortex (Te1) sends projections to both sites, but whether and how it interacts with these areas during fear discrimination are poorly understood. Here we show that in male rats that can differentiate between a new tone and a threatening one, the selective optogenetic inhibition of Te1 axon terminals into the prelimbic (PL) cortex shifted discrimination to fear generalization. Meanwhile, no effects were detected when Te1 terminals were inhibited in the BLA. Using a combination of local field potential and multiunit recordings, we show that in animals that discriminate successfully between a new tone and a harmful one, the activity of the Te1 and the PL cortex becomes immediately and tightly synchronized in the slow-gamma range (40-70 Hz) at the onset of the new tone. This enhanced synchronization was not present in other frequency ranges, such as the theta range. Critically, the level of gamma synchrony predicted the behavioral choice (i.e., no freezing or freezing) of the animals. Moreover, in the same rats, gamma synchrony was absent before the fear-learning trial and when animals should discriminate between an olfactory stimulus and the auditory harmful one. Thus, our findings reveal that the Te1 and the PL cortex dynamically establish a functional connection during auditory fear-discrimination processes, and that this corticocortical oscillatory mechanism drives the behavioral choice of the animals.SIGNIFICANCE STATEMENT Identifying neural networks that infer safety versus danger is of great interest in the scientific field. Fear generalization reduces the chances of an animal's survival and leads to psychiatric diseases, such as post-traumatic stress disorders and phobias in humans. Here we demonstrate that animals able to differentiate a new tone from a previous threating tone showed synchronization between the prefrontal and primary auditory cortices. Critically, this connectivity precedes and predicts the behavioral outcome of the animal. Optogenetic inhibition of this functional connectivity leads to fear generalization. To the best of our knowledge, this study is the first to demonstrate that a corticocortical dialogue occurring between sensory and prefrontal areas is a key node for fear-discrimination processes.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Discriminação Psicológica/fisiologia , Medo/fisiologia , Ritmo Gama , Córtex Pré-Frontal/fisiologia , Estimulação Acústica , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico , Sincronização Cortical , Generalização Psicológica , Masculino , Vias Neurais/fisiologia , Neurônios/fisiologia , Optogenética , Ratos Wistar
6.
Int J Mol Sci ; 20(8)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999624

RESUMO

Artificial receptors designed for adoptive immune therapies need to absolve dual functions: antigen recognition and abilities to trigger the lytic machinery of reprogrammed effector T lymphocytes. In this way, CAR-T cells deliver their cytotoxic hit to cancer cells expressing targeted tumor antigens, bypassing the limitation of HLA-restricted antigen recognition. Expanding technologies have proposed a wide repertoire of soluble and cellular "immunological weapons" to kill tumor cells; they include monoclonal antibodies recognizing tumor associated antigens on tumor cells and immune cell checkpoint inhibition receptors expressed on tumor specific T cells. Moreover, a wide range of formidable chimeric antigen receptors diversely conceived to sustain quality, strength and duration of signals delivered by engineered T cells have been designed to specifically target tumor cells while minimize off-target toxicities. The latter immunological weapons have shown distinct efficacy and outstanding palmarès in curing leukemia, but limited and durable effects for solid tumors. General experience with checkpoint inhibitors and CAR-T cell immunotherapy has identified a series of variables, weaknesses and strengths, influencing the clinical outcome of the oncologic illness. These aspects will be shortly outlined with the intent of identifying the still "missing strategy" to combat epithelial cancers.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos Quiméricos/uso terapêutico , Animais , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Humanos , Imunidade Celular , Imunidade Humoral , Neoplasias/imunologia , Neoplasias/patologia , Medicina de Precisão/métodos , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Evasão Tumoral
7.
Cereb Cortex ; 27(6): 3140-3151, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27252348

RESUMO

The auditory cortex is involved in encoding sounds which have acquired an emotional-motivational charge. However, the neural circuitry engaged by emotional memory processes in the auditory cortex is poorly understood. In this study, we investigated the layers and regions that are recruited in the higher order auditory cortex Te2 by a tone previously paired to either fear or appetitive stimuli in rats. By tracking the protein coded by the immediate early gene zif268, we found that fear memory retrieval engages layers II-III in most regions of Te2. These results were neither due to an enhanced fear state nor to fear-evoked motor responses, as they were absent in animals retrieving an olfactory fear memory. These layers were also activated by appetitive auditory memory retrieval. Strikingly, layer IV was recruited by fear, but not appetitive memories, whereas layer V activity was related to the behavioral responses displayed to the CS. In addition to revealing the layers and regions that are recruited in the Te2 by either fear or appetitive remote memories, our study also shows that the neural circuitry within the Te2 that processes and stores emotional memories varies on the basis of the affective motivational charge of tones.


Assuntos
Apetite/fisiologia , Córtex Auditivo/anatomia & histologia , Córtex Auditivo/fisiologia , Medo , Rememoração Mental/fisiologia , Estimulação Acústica , Animais , Aprendizagem da Esquiva/fisiologia , Condicionamento Clássico , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Masculino , Ratos , Ratos Wistar
8.
J Neurosci ; 36(33): 8586-97, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27535907

RESUMO

UNLABELLED: Memories of frightening events require a protracted consolidation process. Sensory cortex, such as the auditory cortex, is involved in the formation of fearful memories with a more complex sensory stimulus pattern. It remains controversial, however, whether the auditory cortex is also required for fearful memories related to simple sensory stimuli. In the present study, we found that, 1 d after training, the temporary inactivation of either the most anterior region of the auditory cortex, including the primary (Te1) cortex, or the most posterior region, which included the secondary (Te2) component, did not affect the retention of recent memories, which is consistent with the current literature. However, at this time point, the inactivation of the entire auditory cortices completely prevented the formation of new memories. Amnesia was site specific and was not due to auditory stimuli perception or processing and strictly related to the interference with memory consolidation processes. Strikingly, at a late time interval 4 d after training, blocking the posterior part (encompassing the Te2) alone impaired memory retention, whereas the inactivation of the anterior part (encompassing the Te1) left memory unaffected. Together, these data show that the auditory cortex is necessary for the consolidation of auditory fearful memories related to simple tones in rats. Moreover, these results suggest that, at early time intervals, memory information is processed in a distributed network composed of both the anterior and the posterior auditory cortical regions, whereas, at late time intervals, memory processing is concentrated in the most posterior part containing the Te2 region. SIGNIFICANCE STATEMENT: Memories of threatening experiences undergo a prolonged process of "consolidation" to be maintained for a long time. The dynamic of fearful memory consolidation is poorly understood. Here, we show that 1 d after learning, memory is processed in a distributed network composed of both primary Te1 and secondary Te2 auditory cortices, whereas, at late time intervals, memory processing is concentrated in the most posterior Te2 cortex. Together, our data reveal that the consolidation of fearful memories related to simple auditory stimuli requires the auditory cortex, provided that the inactivation encompasses both the primary and the secondary components of the cortex, and that different regions of the auditory cortex play complementary but different roles in these processes.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Memória/fisiologia , Vias Aferentes/fisiologia , Análise de Variância , Anestésicos Locais/farmacologia , Animais , Discriminação Psicológica , Masculino , Ratos , Ratos Wistar , Tetrodotoxina/farmacologia
9.
J Neurosci ; 36(5): 1647-59, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26843646

RESUMO

Negative experiences are quickly learned and long remembered. Key unresolved issues in the field of emotional memory include identifying the loci and dynamics of memory storage and retrieval. The present study examined neural activity in the higher-order auditory cortex Te2 and basolateral amygdala (BLA) and their crosstalk during the recall of recent and remote fear memories. To this end, we obtained local field potentials and multiunit activity recordings in Te2 and BLA of rats that underwent recall at 24 h and 30 d after the association of an acoustic conditioned (CS, tone) and an aversive unconditioned stimulus (US, electric shock). Here we show that, during the recall of remote auditory threat memories in rats, the activity of the Te2 and BLA is highly synchronized in the theta frequency range. This functional connectivity stems from memory consolidation processes because it is present during remote, but not recent, memory retrieval. Moreover, the observed increase in synchrony is cue and region specific. A preponderant Te2-to-BLA directionality characterizes this dialogue, and the percentage of time Te2 theta leads the BLA during remote memory recall correlates with a faster latency to freeze to the auditory conditioned stimulus. The blockade of this information transfer via Te2 inhibition with muscimol prevents any retrieval-evoked neuronal activity in the BLA and animals are unable to retrieve remote memories. We conclude that memories stored in higher-order sensory cortices drive BLA activity when distinguishing between learned threatening and neutral stimuli. SIGNIFICANCE STATEMENT: How and where in the brain do we store the affective/motivational significance of sensory stimuli acquired through life experiences? Scientists have long investigated how "limbic" structures, such as the amygdala, process affective stimuli. Here we show that retrieval of well-established threat memories requires the functional interplay between higher-order components of the auditory cortex and the amygdala via synchrony in the theta range. This functional connectivity is a result of memory consolidation processes and is characterized by a predominant cortical to amygdala direction of information transfer. This connectivity is predictive of the animals' ability to recognize auditory stimuli as aversive. In the absence of this necessary cortical activity, the amygdala is unable to distinguish between frightening and neutral stimuli.


Assuntos
Estimulação Acústica/efeitos adversos , Complexo Nuclear Basolateral da Amígdala/fisiologia , Medo/fisiologia , Rememoração Mental/fisiologia , Reflexo de Sobressalto/fisiologia , Córtex Somatossensorial/fisiologia , Estimulação Acústica/métodos , Animais , Medo/psicologia , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Ratos , Ratos Wistar
10.
Nature ; 473(7348): 514-8, 2011 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21532590

RESUMO

In the adult brain, new synapses are formed and pre-existing ones are lost, but the function of this structural plasticity has remained unclear. Learning of new skills is correlated with formation of new synapses. These may directly encode new memories, but they may also have more general roles in memory encoding and retrieval processes. Here we investigated how mossy fibre terminal complexes at the entry of hippocampal and cerebellar circuits rearrange upon learning in mice, and what is the functional role of the rearrangements. We show that one-trial and incremental learning lead to robust, circuit-specific, long-lasting and reversible increases in the numbers of filopodial synapses onto fast-spiking interneurons that trigger feedforward inhibition. The increase in feedforward inhibition connectivity involved a majority of the presynaptic terminals, restricted the numbers of c-Fos-expressing postsynaptic neurons at memory retrieval, and correlated temporally with the quality of the memory. We then show that for contextual fear conditioning and Morris water maze learning, increased feedforward inhibition connectivity by hippocampal mossy fibres has a critical role for the precision of the memory and the learned behaviour. In the absence of mossy fibre long-term potentiation in Rab3a(-/-) mice, c-Fos ensemble reorganization and feedforward inhibition growth were both absent in CA3 upon learning, and the memory was imprecise. By contrast, in the absence of adducin 2 (Add2; also known as ß-adducin) c-Fos reorganization was normal, but feedforward inhibition growth was abolished. In parallel, c-Fos ensembles in CA3 were greatly enlarged, and the memory was imprecise. Feedforward inhibition growth and memory precision were both rescued by re-expression of Add2 specifically in hippocampal mossy fibres. These results establish a causal relationship between learning-related increases in the numbers of defined synapses and the precision of learning and memory in the adult. The results further relate plasticity and feedforward inhibition growth at hippocampal mossy fibres to the precision of hippocampus-dependent memories.


Assuntos
Retroalimentação Fisiológica/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Memória/fisiologia , Inibição Neural/fisiologia , Potenciais de Ação , Animais , Cerebelo/fisiologia , Condicionamento Psicológico/fisiologia , Proteínas do Citoesqueleto , Medo/fisiologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Modelos Neurológicos , Fibras Musgosas Hipocampais/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Pseudópodes/metabolismo , Células Piramidais/citologia , Células Piramidais/metabolismo , Sinapses/metabolismo
11.
Cytotherapy ; 16(7): 893-905, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24794181

RESUMO

BACKGROUND AIMS: Cord blood (CB) and amniotic fluid (AF) could represent new and attractive mesenchymal stromal cell (MSC) sources, but their potential therapeutic applications are still limited by lack of standardized protocols for isolation and differentiation. In particular, chondrogenic differentiation has never been deeply investigated. METHODS: MSCs were obtained from CB and AF samples collected during cesarean sections at term and compared for their biological and differentiation properties, with particular interest in cartilage differentiation, in which quantitative real-time polymerase chain reaction and immunohistochemical analyses were performed to evaluate the expression of type 2 collagen, type 10 collagen, SRY-box9 and aggrecan. RESULTS: We were able to isolate MSCs from 12 of 30 (40%) and 5 of 20 (25%) CB and AF units, respectively. Fluorescence in situ hybridization analysis indicated the fetal origin of isolated MSC strains. Both populations expressed mesenchymal but not endothelial and hematopoietic markers, even though we observed a lower expression of human leukocyte antigen (HLA) I in CB-MSCs. No differences in proliferation rate and cell cycle analysis could be detected. After osteogenic induction, both populations showed matrix mineralization and typical marker expression. Under chondrogenic conditions, pellets derived from CB-MSCs, in contrast with AF-MSCs pellets, were significantly larger, showed cartilage-like morphology and resulted positive for chondrocyte-associated markers, such as type 2 collagen, type 10 collagen, SRY-box9 and aggrecan. CONCLUSIONS: Our results show that CB-MSCs and AF-MSCs collected at term differ from each other in their biological and differentiation properties. In particular, only CB-MSCs showed a clear chondrogenic potential and thus could represent an ideal candidate for cartilage-tissue engineering.


Assuntos
Diferenciação Celular/genética , Condrogênese/genética , Sangue Fetal/citologia , Células-Tronco Mesenquimais/citologia , Linhagem da Célula/genética , Feminino , Feto , Humanos , Hibridização in Situ Fluorescente , Gravidez , Engenharia Tecidual
12.
Exp Eye Res ; 120: 109-17, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24486457

RESUMO

The study was designed to investigate the effects of a new ophthalmic solution containing 0.05% vitamin B12 0.05% on corneal nerve regeneration in rats after corneal injury. Eyes of anesthetized male Wistar rats were subjected to corneal injury by removing the corneal epithelium with corneal brush (Algerbrush). After the epithelial debridement, the right eye of each animal received the instillation of one drop of the ophthalmic solution containing vitamin B12 0.05% plus taurine 0.5% and sodium hyaluronate 0.5% four time per day for 10 or 30 days. Left eyes were used as control and treated with solution containing taurine 0.5% and sodium hyaluronate 0.5% alone following the same regimen. Fluorescein staining by slit-lamp and morphological analysis was used to determine corneal wound healing. Immunohistochemistry, immunoblot and confocal microscopy were used to examine corneal re-innervation. Slit-lamp and histological analyses showed that re-epithelization of the corneas was accelerated in rats treated with vitamin B12. A clear-cut difference between the two groups of rats was seen after 10 days of treatment, whereas a near-to-complete re-epithelization was observed in both groups at 30 days. Vitamin B12 treatment had also a remarkable effect on corneal re-innervation, as shown by substantial increased in the expression of neurofilament 160 and ß-III tubulin at both 10 and 30 days. The presence of SV2A-positive nerve endings suggests the presence of synapse-like specialized structures in corneal epithelium of the eye treated with vitamin B12. Our findings suggest that vitamin B12 treatment represents a powerful strategy to accelerate not only re-epithelization but also corneal re-innervation after mechanical injury.


Assuntos
Córnea/inervação , Traumatismos Oculares/fisiopatologia , Regeneração Nervosa/efeitos dos fármacos , Nervo Oftálmico/fisiologia , Vitamina B 12/farmacologia , Complexo Vitamínico B/farmacologia , Ferimentos não Penetrantes/fisiopatologia , Animais , Lesões da Córnea , Fluorofotometria , Concentração de Íons de Hidrogênio , Immunoblotting , Imuno-Histoquímica , Masculino , Microscopia Confocal , Proteínas de Neurofilamentos/metabolismo , Soluções Oftálmicas , Concentração Osmolar , Ratos , Ratos Wistar , Taurina/farmacologia , Tubulina (Proteína)/metabolismo
13.
Nat Cell Biol ; 9(3): 255-67, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17293855

RESUMO

Cells derived from blood vessels of human skeletal muscle can regenerate skeletal muscle, similarly to embryonic mesoangioblasts. However, adult cells do not express endothelial markers, but instead express markers of pericytes, such as NG2 proteoglycan and alkaline phosphatase (ALP), and can be prospectively isolated from freshly dissociated ALP(+) cells. Unlike canonical myogenic precursors (satellite cells), pericyte-derived cells express myogenic markers only in differentiated myotubes, which they form spontaneously with high efficiency. When transplanted into severe combined immune deficient-X-linked, mouse muscular dystrophy (scid-mdx) mice, pericyte-derived cells colonize host muscle and generate numerous fibres expressing human dystrophin. Similar cells isolated from Duchenne patients, and engineered to express human mini-dystrophin, also give rise to many dystrophin-positive fibres in vivo. These data show that myogenic precursors, distinct from satellite cells, are associated with microvascular walls in the human skeletal muscle, may represent a correlate of embryonic 'mesoangioblasts' present after birth and may be a promising candidate for future cell-therapy protocols in patients.


Assuntos
Células-Tronco Adultas/citologia , Músculo Esquelético/citologia , Pericitos/citologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/citologia , Adolescente , Adulto , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/transplante , Idoso , Animais , Antígenos CD/análise , Técnicas de Cultura de Células/métodos , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Nus , Camundongos SCID , Pessoa de Meia-Idade , Proteínas Musculares/análise , Proteínas Musculares/genética , Músculo Esquelético/química , Músculo Esquelético/fisiologia , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/cirurgia , Pericitos/química , Pericitos/transplante , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/transplante , Transplante de Células-Tronco/métodos , Resultado do Tratamento
14.
Cell Rep ; 43(5): 114151, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38656872

RESUMO

The mammalian brain can store and retrieve memories of related events as distinct memories and remember common features of those experiences. How it computes this function remains elusive. Here, we show in rats that recent memories of two closely timed auditory fear events share overlapping neuronal ensembles in the basolateral amygdala (BLA) and are functionally linked. However, remote memories have reduced neuronal overlap and are functionally independent. The activity of parvalbumin (PV)-expressing neurons in the BLA plays a crucial role in forming separate remote memories. Chemogenetic blockade of PV preserves individual remote memories but prevents their segregation, resulting in reciprocal associations. The hippocampus drives this process through specific excitatory connections with BLA GABAergic interneurons. These findings provide insights into the neuronal mechanisms that minimize the overlap between distinct remote memories and enable the retrieval of related memories separately.


Assuntos
Tonsila do Cerebelo , Hipocampo , Parvalbuminas , Animais , Hipocampo/fisiologia , Hipocampo/metabolismo , Ratos , Masculino , Tonsila do Cerebelo/fisiologia , Parvalbuminas/metabolismo , Complexo Nuclear Basolateral da Amígdala/fisiologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Interneurônios/fisiologia , Interneurônios/metabolismo , Memória/fisiologia , Medo/fisiologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Neurônios/fisiologia , Neurônios/metabolismo , Vias Neurais/fisiologia
15.
Elife ; 132024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913410

RESUMO

Downregulating emotional overreactions toward threats is fundamental for developing treatments for anxiety and post-traumatic disorders. The prefrontal cortex (PFC) is critical for top-down modulatory processes, and despite previous studies adopting repetitive transcranial magnetic stimulation (rTMS) over this region provided encouraging results in enhancing extinction, no studies have hitherto explored the effects of stimulating the medial anterior PFC (aPFC, encompassing the Brodmann area 10) on threat memory and generalization. Here we showed that rTMS over the aPFC applied before threat memory retrieval immediately decreases implicit reactions to learned and novel stimuli in humans. These effects enduringly persisted 1 week later in the absence of rTMS. No effects were detected on explicit recognition. Critically, rTMS over the aPFC resulted in a more pronounced reduction of defensive responses compared to rTMS targeting the dorsolateral PFC. These findings reveal a previously unexplored prefrontal region, the modulation of which can efficiently and durably inhibit implicit reactions to learned threats. This represents a significant advancement toward the long-term deactivation of exaggerated responses to threats.


Assuntos
Medo , Córtex Pré-Frontal , Estimulação Magnética Transcraniana , Humanos , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Masculino , Adulto Jovem , Feminino , Adulto , Extinção Psicológica/fisiologia
16.
Front Neurosci ; 16: 902925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663560

RESUMO

Past aversive experiences shape our ability to deal with future dangers, through the encoding of implicit and explicit memory traces and through the ability to generalize defensive reactions to new stimuli resembling learned threats. Numerous evidence demonstrate that sleep is important for the consolidation of memories related to threatening events. However, there is a lack of studies examining the effects of sleep deprivation on the retrieval of consolidated threat memories, and previous studies on the role of sleep in threat generalization have produced mixed results. To address these issues, here we adopted a differential threat conditioning and a delayed (second half of the night) sleep deprivation during the first or the seventh night after learning. We found no effects of sleep deprivation on either implicit or explicit threat memories, regardless of its occurrence timing. Conversely, implicit but not explicit responses to novel cues similar to a learned threat displayed a widened generalization pattern, but only if sleep deprivation took place during the first night after conditioning and not if it occurred during the seventh night after conditioning. Therefore, we propose that sleeping after exposure to danger may support optimal implicit discrimination processes to evaluate new signals in the future and that even a brief period of sleeplessness may widen threat generalization to new stimuli, which is a hallmark of several threat-related disorders.

17.
Proc Natl Acad Sci U S A ; 105(2): 769-74, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18184813

RESUMO

Despite the widespread distribution of inhibitory synapses throughout the central nervous system, plasticity of inhibitory synapses related to associative learning has never been reported. In the cerebellum, the neural correlate of fear memory is provided by a long-term potentiation (LTP) of the excitatory synapse between the parallel fibers (PFs) and the Purkinje cell (PC). In this article, we provide evidence that inhibitory synapses in the cerebellar cortex also are affected by fear conditioning. Whole-cell patch-clamp recordings of spontaneous and miniature GABAergic events onto the PC show that the frequency but not the amplitude of these events is significantly greater up to 24 h after the conditioning. Adequate levels of excitation and inhibition are required to maintain the temporal fidelity of a neuronal network. Such fidelity can be evaluated by determining the time window for multiple input coincidence detection. We found that, after fear learning, PCs are able to integrate excitatory inputs with greater probability within short delays, but the width of the whole window is unchanged. Therefore, excitatory LTP provides a more effective detection, and inhibitory potentiation serves to maintain the time resolution of the system.


Assuntos
Córtex Cerebelar/metabolismo , Aprendizagem , Potenciação de Longa Duração , Sinapses/metabolismo , Animais , Cerebelo/metabolismo , Eletrofisiologia , Medo , Plasticidade Neuronal , Neurônios/metabolismo , Técnicas de Patch-Clamp , Probabilidade , Células de Purkinje/metabolismo , Ratos , Ratos Wistar , Ácido gama-Aminobutírico/metabolismo
18.
Sci Rep ; 9(1): 13367, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527740

RESUMO

One strategy to address new potential dangers is to generate defensive responses to stimuli that remind learned threats, a phenomenon called fear generalization. During a threatening experience, the brain encodes implicit and explicit memory traces. Nevertheless, there is a lack of studies comparing implicit and explicit response patterns to novel stimuli. Here, by adopting a discriminative threat conditioning paradigm and a two-alternative forced-choice recognition task, we found that the implicit reactions were selectively elicited by the learned threat and not by a novel similar but perceptually discriminable stimulus. Conversely, subjects explicitly misidentified the same novel stimulus as the learned threat. This generalization response was not due to stress-related interference with learning, but related to the embedded threatening value. Therefore, we suggest a dissociation between implicit and explicit threat recognition profiles and propose that the generalization of explicit responses stems from a flexible cognitive mechanism dedicated to the prediction of danger.


Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Memória/fisiologia , Encéfalo/fisiologia , Condicionamento Operante/fisiologia , Medo/psicologia , Feminino , Resposta Galvânica da Pele/fisiologia , Generalização Psicológica/fisiologia , Humanos , Aprendizagem/fisiologia , Masculino , Reconhecimento Psicológico/fisiologia , Adulto Jovem
19.
Stem Cells Int ; 2019: 1579102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467557

RESUMO

Clonal development (clonogenicity) is an inherent property of a subset of postnatal bone marrow (BM) adherent stromal mesenchymal stem cells (MSCs) from which a multipotent progeny develops in culture. Our data suggest that clonogenicity and BM-MSC expansion are two distinct biological events. This hypothesis is based on the following observations: (1) the beginning of clonal growth is a property strictly dependent on serum and independent of the social context, (2) the expansion of individual clone is influenced by events deriving from a social context during initial growth, (3) clonogenic cells grown in a social context in presence of serum can emancipate themselves to generate a secondary different progeny, and (4) the ability of socially generated clones to develop an inherent potential for further growth suggests that quorum sensing may operate in BM-MSC cultures and determine the potential growth of clonal strains.

20.
Neurosci Biobehav Rev ; 98: 256-264, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30664888

RESUMO

How and where sensory stimuli, such as tones or lights, are linked to valence is an important unresolved question in the field of neuroscience. The auditory cortex is essential to analyse the identity and the behavioural importance of tones paired with emotional events. On the contrary, whether the auditory cortex may also encode information on the emotional-motivational valence of sounds is much more controversial. Here, we reviewed recent studies showing that the activity of cortical neurons reflects information about the content of emotional stimuli paired with tones. Critically, the blockade of these neuronal processes prevents animals from recognising sounds as aversive or pleasant. Based on these findings, we proposed a conceptual model in which the auditory cortex may incorporate ascending information from subcortical nuclei about the valence of sounds in sound representations and may consequently drive the activity of subcortical structures towards emotionally laden tones. This hypothesis may also have important implications in the characterisation of neural circuits engaged by maladaptive affective disorders, such as phobias.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Emoções/fisiologia , Medo/fisiologia , Motivação/fisiologia , Estimulação Acústica , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA