Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32318560

RESUMO

Cardiovascular diseases represent the leading cause of death in developed countries. Modern surgical methods show poor efficiency in the substitution of small-diameter arteries (<6 mm). Due to the difference in mechanical properties between the native artery and the substitute, the behavior of the vessel wall is a major cause of inefficient substitutions. The use of decellularized scaffolds has shown optimal prospects in different applications for regenerative medicine. The purpose of this work was to obtain polylysine-enriched vascular substitutes, derived from decellularized porcine femoral and carotid arteries. Polylysine acts as a matrix cross-linker, increasing the mechanical resistance of the scaffold with respect to decellularized vessels, without altering the native biocompatibility and hemocompatibility properties. The biological characterization showed an excellent biocompatibility, while mechanical tests displayed that the Young's modulus of the polylysine-enriched matrix was comparable to native vessel. Burst pressure test demonstrated strengthening of the polylysine-enriched matrix, which can resist to higher pressures with respect to native vessel. Mechanical analyses also show that polylysine-enriched vessels presented minimal degradation compared to native. Concerning hemocompatibility, the performed analyses show that polylysine-enriched matrices increase coagulation time, with respect to commercial Dacron vascular substitutes. Based on these findings, polylysine-enriched decellularized vessels resulted in a promising approach for vascular substitution.

2.
J Vis Exp ; (147)2019 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-31157774

RESUMO

Tracheostomy is one of the most frequent procedures, performed through various techniques in the intensive care unit and emergency situations. Despite this, there is a lack of training on this procedure that affects its outcome, which is also dependent on operator's dexterity. Here, we take the specific training and simulation into consideration. This article aims to describe every step of the manufacture of a new multi-purpose low-cost animal bench-model, with the support of video and images, and to obtain an opinion about the quality of this model by administering a questionnaire to professionals with experience in the procedures. Ten experts in the technique were enrolled. The model scored an average of 3.45/5 for its anatomical realism; 4.75/5 for its usefulness as a training tool for simulation courses and assessments. The time necessary to build the model was 15 minutes, and the cost amounted to 10€. The animal bench-model was considered a very useful simulator for tracheostomy training and assessments. Therefore, it could be used as a tool for medical courses and residencies.


Assuntos
Custos e Análise de Custo , Ensino , Traqueostomia/economia , Traqueostomia/educação , Animais , Humanos , Modelos Animais , Inquéritos e Questionários , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA