Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37571648

RESUMO

This experimental study aimed to characterize the thermal properties of ex vivo porcine and bovine kidney tissues in steady-state heat transfer conditions in a wider thermal interval (23.2-92.8 °C) compared to previous investigations limited to 45 °C. Thermal properties, namely thermal conductivity (k) and thermal diffusivity (α), were measured in a temperature-controlled environment using a dual-needle probe connected to a commercial thermal property analyzer, using the transient hot-wire technique. The estimation of measurement uncertainty was performed along with the assessment of regression models describing the trend of measured quantities as a function of temperature to be used in simulations involving heat transfer in kidney tissue. A direct comparison of the thermal properties of the same tissue from two different species, i.e., porcine and bovine kidney tissues, with the same experimental transient hot-wire technique, was conducted to provide indications on the possible inter-species variabilities of k and α at different selected temperatures. Exponential fitting curves were selected to interpolate the measured values for both porcine and bovine kidney tissues, for both k and α. The results show that the k and α values of the tissues remained rather constant from room temperature up to the onset of water evaporation, and a more marked increase was observed afterward. Indeed, at the highest investigated temperatures, i.e., 90.0-92.8 °C, the average k values were subject to 1.2- and 1.3-fold increases, compared to their nominal values at room temperature, in porcine and bovine kidney tissue, respectively. Moreover, at 90.0-92.8 °C, 1.4- and 1.2-fold increases in the average values of α, compared to baseline values, were observed for porcine and bovine kidney tissue, respectively. No statistically significant differences were found between the thermal properties of porcine and bovine kidney tissues at the same selected tissue temperatures despite their anatomical and structural differences. The provided quantitative values and best-fit regression models can be used to enhance the accuracy of the prediction capability of numerical models of thermal therapies. Furthermore, this study may provide insights into the refinement of protocols for the realization of tissue-mimicking phantoms and the choice of tissue models for bioheat transfer studies in experimental laboratories.


Assuntos
Temperatura Alta , Hipertermia Induzida , Animais , Bovinos , Suínos , Temperatura , Condutividade Térmica , Rim
2.
Int J Hyperthermia ; 39(1): 297-340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35129046

RESUMO

BACKGROUND: Detailed information on the temperature dependence of tissue thermophysical and mechanical properties is pivotal for the optimal implementation of mathematical models and simulation-based tools for the pre-planning of thermal ablation therapies. These models require in-depth knowledge of the temperature sensitivity of these properties and other influential terms (e.g., blood perfusion and metabolic heat) to maximize the treatment prediction outcome. METHODOLOGY: A systematic literature review of experimental trials investigating thermophysical and mechanical properties of biological media, as well as blood perfusion and metabolic heat, as a function of temperature in hyperthermic and ablative thermal range, was conducted up to June 2021. RESULTS: A total of 61 articles was selected, thus enabling a comprehensive overview of the temperature dependence of thermophysical properties (i.e. thermal conductivity, specific heat, volumetric heat capacity, density, thermal diffusivity), and mechanical properties (shear, elastic, storage, loss and complex moduli, loss factor, stiffness) along with the principal measurement techniques. The reviewed studies considered different tissues, e.g., liver, fat, cartilage, brain, myocardium, muscle, bone, skin, pancreas tissues, and also some tumorous tissues. CONCLUSIONS: The thermophysical properties of soft tissues appear rather constant until 90 °C, with slight differences ascribable to tissues characteristics and measurement methods. Conversely, the information on mechanical properties is heterogeneous because most of the articles investigated different types of properties in different biological tissues. Furthermore, most of the experiments were conducted ex vivo; only a small percentage concerned in vivo studies. Limited recent information about the temperature dependence of metabolic heat and blood perfusion was observed.


Assuntos
Hipertermia Induzida , Simulação por Computador , Temperatura Alta , Hipertermia Induzida/métodos , Modelos Biológicos , Temperatura , Condutividade Térmica
3.
Sensors (Basel) ; 22(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35336430

RESUMO

This work presents an experimental investigation of the effect of chemical etching on the refractive index (RI) sensitivity of tilted fiber Bragg gratings (TFBGs). Hydrofluoric acid (HF) was used stepwise in order to reduce the optical fiber diameter from 125 µm to 13 µm. After each etching step, TFBGs were calibrated using two ranges of RI solutions: the first one with high RI variation (from 1.33679 RIU to 1.37078 RIU) and the second with low RI variation (from 1.34722 RIU to 1.34873 RIU). RI sensitivity was analyzed in terms of wavelength shift and intensity change of the grating resonances. The highest amplitude sensitivities obtained are 1008 dB/RIU for the high RI range and 8160 dB/RIU for the low RI range, corresponding to the unetched TFBG. The highest wavelength sensitivities are 38.8 nm/RIU for a fiber diameter of 100 µm for the high RI range, and 156 nm/RIU for a diameter of 40 µm for the small RI range. In addition, the effect of the etching process on the spectral intensity of the cladding modes, their wavelength separation and sensor linearity (R2) were studied as well. As a result, an optimization of the etching process is provided, so that the best trade-off between sensitivity, intensity level, and fiber thickness can be obtained.


Assuntos
Fibras Ópticas , Refratometria
4.
Int J Hyperthermia ; 38(1): 1099-1110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34315306

RESUMO

BACKGROUND: Photothermal therapy is currently under the spotlight to improve the efficacy of minimally invasive thermal treatment of solid tumors. The interplay of several factors including the radiation wavelengths and the nanoparticle characteristics underlie the thermal outcome. However, a quantitative thermal analysis in in vivo models embedding nanoparticles and under different near-infrared (NIR) wavelengths is missing. PURPOSE: We evaluate the thermal effects induced by different combinations of NIR laser wavelengths and gold nanorods (GNRs) in breast cancer tumor models in mice. MATERIALS AND METHODS: Four laser wavelengths within the therapeutic window, i.e., 808, 940, 975, and 1064 nm were employed, and corresponding GNRs were intratumorally injected. The tissue thermal response was evaluated in terms of temperature profile and time constants, considering the step response of a first-order system as a model. RESULTS: The 808 nm and 1064 nm lasers experienced the highest temperature enhancements (>24%) in presence of GNRs compared to controls; conversely, 975 nm and 940 nm lasers showed high temperatures in controls due to significant tissue absorption and the lowest temperature difference with and without GNRs (temperature enhancement <10%). The presence of GNRs resulted in small time constants, thus quicker laser-induced thermal response (from 67 s to 33 s at 808 nm). CONCLUSIONS: The thermal responses of different GNR-laser wavelength combinations quantitatively validate the widespread usage of 808 nm laser for nanoparticle-assisted photothermal procedures. Moreover, our results provide insights on other usable wavelengths, toward the identification of an effective photothermal treatment strategy for the removal of focal malignancies.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Nanotubos , Animais , Neoplasias da Mama/radioterapia , Feminino , Ouro/uso terapêutico , Humanos , Lasers , Camundongos
5.
Sci Technol Adv Mater ; 22(1): 218-233, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33795974

RESUMO

Multifunctional nanocarriers have attracted considerable interest in improving cancer treatment outcomes. Poly(lactide-co-glycolide) (PLGA) nanospheres encapsulating copper oxide nanoparticles (CuO-NPs) are characterized by antitumor activity and exhibit dual-modal contrast-enhancing capabilities. An in vitro evaluation demonstrates that this delivery system allows controlled and sustained release of CuO-NPs. To achieve localized release on demand, an external stimulation by laser irradiation is suggested. Furthermore, to enable simultaneous complementary photothermal therapy, polydopamine (PDA) coating for augmented laser absorption is proposed. To this aim, two formulations of CuO-NPs loaded nanospheres are prepared from PLGA polymers RG-504 H (H-PLGA) and RG-502 H (L-PLGA) as scaffolds for surface modification through in situ polymerization of dopamine and then PEGylation. The obtained CuO-NPs-based multifunctional nanocarriers are characterized, and photothermal effects are examined as a function of wavelength and time. The results show that 808 nm laser irradiation of the coated nanospheres yields maximal temperature elevation (T = 41°C) and stimulates copper release at a much faster rate compared to non-irradiated formulations. Laser-triggered CuO-NP release is mainly depended on the PLGA core, resulting in faster release with L-PLGA, which also yielded potent anti-tumor efficacy in head and neck cancer cell line (Cal-33). In conclusion, the suggested multifunctional nanoplatform offers the integrated benefits of diagnostic imaging and laser-induced drug release combined with thermal therapy.

6.
Sensors (Basel) ; 21(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205567

RESUMO

The ability to predict heat transfer during hyperthermal and ablative techniques for cancer treatment relies on understanding the thermal properties of biological tissue. In this work, the thermal properties of ex vivo liver, pancreas and brain tissues are reported as a function of temperature. The thermal diffusivity, thermal conductivity and volumetric heat capacity of these tissues were measured in the temperature range from 22 to around 97 °C. Concerning the pancreas, a phase change occurred around 45 °C; therefore, its thermal properties were investigated only until this temperature. Results indicate that the thermal properties of the liver and brain have a non-linear relationship with temperature in the investigated range. In these tissues, the thermal properties were almost constant until 60 to 70 °C and then gradually changed until 92 °C. In particular, the thermal conductivity increased by 100% for the brain and 60% for the liver up to 92 °C, while thermal diffusivity increased by 90% and 40%, respectively. However, the heat capacity did not significantly change in this temperature range. The thermal conductivity and thermal diffusivity were dramatically increased from 92 to 97 °C, which seems to be due to water vaporization and state transition in the tissues. Moreover, the measurement uncertainty, determined at each temperature, increased after 92 °C. In the temperature range of 22 to 45 °C, the thermal properties of pancreatic tissue did not change significantly, in accordance with the results for the brain and liver. For the three tissues, the best fit curves are provided with regression analysis based on measured data to predict the tissue thermal behavior. These curves describe the temperature dependency of tissue thermal properties in a temperature range relevant for hyperthermia and ablation treatments and may help in constructing more accurate models of bioheat transfer for optimization and pre-planning of thermal procedures.


Assuntos
Hipertermia Induzida , Encéfalo , Temperatura Alta , Fígado , Pâncreas , Temperatura , Condutividade Térmica
7.
Sensors (Basel) ; 21(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34640930

RESUMO

Inappropriate posture and the presence of spinal disorders require specific monitoring systems. In clinical settings, posture evaluation is commonly performed with visual observation, electrogoniometers or motion capture systems (MoCaps). Developing a measurement system that can be easily used also in non-structured environments would be highly beneficial for accurate posture monitoring. This work proposes a system based on three magneto-inertial measurement units (MIMU), placed on the backs of seventeen volunteers on the T3, T12 and S1 vertebrae. The reference system used for validation is a stereophotogrammetric motion capture system. The volunteers performed forward bending and sit-to-stand tests. The measured variables for identifying the posture were the kyphosis and the lordosis angles, as well as the range of movement (ROM) of the body segments. The comparison between MIMU and MoCap provided a maximum RMSE of 5.6° for the kyphosis and the lordosis angles. The average lumbo-pelvic contribution during forward bending (41.8 ± 8.6%) and the average lumbar ROM during sit-to-stand (31.8 ± 9.8° for sitting down, 29.6 ± 7.6° for standing up) obtained with the MIMU system agree with the literature. In conclusion, the MIMU system, which is wearable, inexpensive and easy to set up in non-structured environments, has been demonstrated to be effective in posture evaluation.


Assuntos
Movimento , Postura , Fenômenos Biomecânicos , Humanos , Pelve , Postura Sentada
8.
Sensors (Basel) ; 21(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477656

RESUMO

This work presents the potential of hyperspectral imaging (HSI) to monitor the thermal outcome of laser ablation therapy used for minimally invasive tumor removal. Our main goal is the establishment of indicators of the thermal damage of living tissues, which can be used to assess the effect of the procedure. These indicators rely on the spectral variation of temperature-dependent tissue chromophores, i.e., oxyhemoglobin, deoxyhemoglobin, methemoglobin, and water. Laser treatment was performed at specific temperature thresholds (from 60 to 110 °C) on in-vivo animal liver and was assessed with a hyperspectral camera (500-995 nm) during and after the treatment. The indicators were extracted from the hyperspectral images after the following processing steps: the breathing motion compensation and the spectral and spatial filtering, the selection of spectral bands corresponding to specific tissue chromophores, and the analysis of the areas under the curves for each spectral band. Results show that properly combining spectral information related to deoxyhemoglobin, methemoglobin, lipids, and water allows for the segmenting of different zones of the laser-induced thermal damage. This preliminary investigation provides indicators for describing the thermal state of the liver, which can be employed in the future as clinical endpoints of the procedure outcome.


Assuntos
Terapia a Laser , Lasers , Animais , Luz , Fígado/diagnóstico por imagem , Temperatura
9.
Sensors (Basel) ; 21(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513666

RESUMO

Thermal ablation is achieved by delivering heat directly to tissue through a minimally invasive applicator. The therapy requires a temperature control between 50-100 °C since the mortality of the tumor is directly connected with the thermal dosimetry. Existing temperature monitoring techniques have limitations such as single-point monitoring, require costly equipment, and expose patients to X-ray radiation. Therefore, it is important to explore an alternative sensing solution, which can accurately monitor temperature over the whole ablated region. The work aims to propose a distributed fiber optic sensor as a potential candidate for this application due to the small size, high resolution, bio-compatibility, and temperature sensitivity of the optical fibers. The working principle is based on spatial multiplexing of optical fibers to achieve 3D temperature monitoring. The multiplexing is achieved by high-scattering, nanoparticle-doped fibers as sensing fibers, which are spatially separated by lower-scattering level of single-mode fibers. The setup, consisting of twelve sensing fibers, monitors tissue of 16 mm × 16 mm × 25 mm in size exposed to a gold nanoparticle-mediated microwave ablation. The results provide real-time 3D thermal maps of the whole ablated region with a high resolution. The setup allows for identification of the asymmetry in the temperature distribution over the tissue and adjustment of the applicator to follow the allowed temperature limits.


Assuntos
Nanopartículas Metálicas , Fibras Ópticas , Animais , Ouro , Humanos , Fígado , Óxido de Magnésio , Suínos , Temperatura
10.
Sensors (Basel) ; 21(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34696147

RESUMO

Thermal ablation is an acceptable alternative treatment for primary liver cancer, of which laser ablation (LA) is one of the least invasive approaches, especially for tumors in high-risk locations. Precise control of the LA effect is required to safely destroy the tumor. Although temperature imaging techniques provide an indirect measurement of the thermal damage, a degree of uncertainty remains about the treatment effect. Optical techniques are currently emerging as tools to directly assess tissue thermal damage. Among them, hyperspectral imaging (HSI) has shown promising results in image-guided surgery and in the thermal ablation field. The highly informative data provided by HSI, associated with deep learning, enable the implementation of non-invasive prediction models to be used intraoperatively. Here we show a novel paradigm "peak temperature prediction model" (PTPM), convolutional neural network (CNN)-based, trained with HSI and infrared imaging to predict LA-induced damage in the liver. The PTPM demonstrated an optimal agreement with tissue damage classification providing a consistent threshold (50.6 ± 1.5 °C) for the damage margins with high accuracy (~0.90). The high correlation with the histology score (r = 0.9085) and the comparison with the measured peak temperature confirmed that PTPM preserves temperature information accordingly with the histopathological assessment.


Assuntos
Aprendizado Profundo , Terapia a Laser , Imageamento Hiperespectral , Lasers , Redes Neurais de Computação
11.
Surg Innov ; 28(1): 7-17, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33095686

RESUMO

Background. Pneumoperitoneum insufflation with warmed and humidified carbon dioxide (WH-CO2) can prevent heat loss and increase tissue oxygenation. We evaluated the impact of localized WH-CO2 insufflation on the anastomotic healing process. Methods. Sixty male Wistar rats were randomized: Group 1 (control, n = 12), Group 2 (cold and dry CO2, CD-CO2, n = 24), and Group 3 (WH-CO2, n = 24). A magnetic compression side-to-side colonic anastomosis was performed under 60-minute local abdominal CO2 flow insufflation. Animal temperature was recorded. IL-1, IL-6, and CRP levels were assessed before and after insufflation and on postoperative day (POD) 7 and POD 10. Endoscopic follow-up was performed on POD 7 and POD 10. A burst pressure (BP) test of the specimen was performed on POD 10, and histopathological analysis was then performed. Metabolomics of the anastomotic site was determined. Results. Seven rats (5 CD-CO2 group, 1 WH-CO2 group, and 1 control group) died during the survival period. Necropsies revealed intestinal occlusions (n = 2). One additional rat from the CD-CO2 group was sacrificed on POD 7 due to intestinal perforation. The postoperative course was uneventful in the remaining cases. There was no difference in BP among the groups. Thermal monitoring confirmed that WH-CO2 insufflation was effective to reduce heat loss. IL-1 levels were statistically and significantly lower on POD 10 in the WH-CO2 group than the CD-CO2 group but not lower than the control group. CRP levels, histopathology, and metabolomics did not show any difference between the 3 groups. Conclusions. WH-CO2 was effective to preserve core temperature. However, it did not improve anastomotic healing.


Assuntos
Insuflação , Anastomose Cirúrgica , Animais , Dióxido de Carbono , Fenômenos Magnéticos , Masculino , Modelos Teóricos , Ratos , Ratos Wistar
12.
Sensors (Basel) ; 20(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33203048

RESUMO

Laser ablation (LA) of cancer is a minimally invasive technique based on targeted heat release. Controlling tissue temperature during LA is crucial to achieve the desired therapeutic effect in the organs while preserving the healthy tissue around. Here, we report the design and implementation of a real-time monitoring system performing closed-loop temperature control, based on fiber Bragg grating (FBG) spatial measurements. Highly dense FBG arrays (1.19 mm length, 0.01 mm edge-to-edge distance) were inscribed in polyimide-coated fibers using the femtosecond point-by-point writing technology to obtain the spatial resolution needed for accurate reconstruction of high-gradient temperature profiles during LA. The zone control strategy was implemented such that the temperature in the laser-irradiated area was maintained at specific set values (43 and 55 °C), in correspondence to specific radii (2 and 6 mm) of the targeted zone. The developed control system was assessed in terms of measured temperature maps during an ex vivo liver LA. Results suggest that the temperature-feedback system provides several advantages, including controlling the margins of the ablated zone and keeping the maximum temperature below the critical values. Our strategy and resulting analysis go beyond the state-of-the-art LA regulation techniques, encouraging further investigation in the identification of the optimal control-loop.


Assuntos
Terapia a Laser , Fígado/cirurgia , Temperatura , Animais , Lasers
13.
Sensors (Basel) ; 20(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198326

RESUMO

The increasing recognition of minimally invasive thermal treatment of tumors motivate the development of accurate thermometry approaches for guaranteeing the therapeutic efficacy and safety. Magnetic Resonance Thermometry Imaging (MRTI) is nowadays considered the gold-standard in thermometry for tumor thermal therapy, and assessment of its performances is required for clinical applications. This study evaluates the accuracy of fast MRTI on a synthetic phantom, using dense ultra-short Fiber Bragg Grating (FBG) array, as a reference. Fast MRTI is achieved with a multi-slice gradient-echo echo-planar imaging (GRE-EPI) sequence, allowing monitoring the temperature increase induced with a 980 nm laser source. The temperature distributions measured with 1 mm-spatial resolution with both FBGs and MRTI were compared. The root mean squared error (RMSE) value obtained by comparing temperature profiles showed a maximum error of 1.2 °C. The Bland-Altman analysis revealed a mean of difference of 0.1 °C and limits of agreement 1.5/-1.3 °C. FBG sensors allowed to extensively assess the performances of the GRE-EPI sequence, in addition to the information on the MRTI precision estimated by considering the signal-to-noise ratio of the images (0.4 °C). Overall, the results obtained for the GRE-EPI fully satisfy the accuracy (~2 °C) required for proper temperature monitoring during thermal therapies.


Assuntos
Termometria , Imagem Ecoplanar , Hipertermia Induzida , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas
14.
Surg Endosc ; 33(10): 3200-3208, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30456508

RESUMO

BACKGROUND: Endoscopic submucosal dissection allows for "en bloc" removal of early gastrointestinal neoplasms. However, it is technically demanding and time-consuming. Alternatives could rely on energy-based techniques. We aimed to evaluate a predictive numerical model of thermal damage to preoperatively define optimal laser settings allowing for a controlled ablation down to the submucosa, and the ability of confocal endomicroscopy to provide damage information. MATERIALS AND METHODS: A Nd:YAG laser was applied onto the gastric mucosa of 21 Wistar rats on 10 spots (total 210). Power settings ranging from 0.5 to 2.5W were applied during 1-12 s, with a consequent energy delivery varying from 0.5 to 30 J. Out of the 210 samples, a total of 1050 hematoxilin-eosin stained slides were obtained. To evaluate thermal injury, the ratio between the damage depth (DD) over the mucosa and the submucosa thickness (T) was calculated. Effective and safe ablation was considered for a DD/T ratio ≤ 1 (only mucosal and submucosal damage). Confocal endomicroscopy was performed before and after ablation. A numerical model, using human physical properties, was developed to predict thermal damage. RESULTS: No full-thickness perforations were detected. On histology, the DD/T ratio at 0.5 J was 0.57 ± 0.21, significantly lower when compared to energies ranging from 15 J (a DD/T ratio = 1.2 ± 0.3; p < 0.001) until 30 J (a DD/T ratio = 1.33 ± 0.31; p < 0.001). Safe mucosal and submucosal ablations were achieved applying energy between 4 and 12 J, never impairing the muscularis propria. Confocal endomicroscopy showed a distorted gland architecture. The predicted damage depth demonstrated a significant positive linear correlation with the experimental data (Pearson's r 0.85; 95% CI 0.66-0.94). CONCLUSIONS: Low-power settings achieved effective and safe mucosal and submucosal ablation. The numerical model allowed for an accurate prediction of the ablated layers. Confocal endomicroscopy provided real-time thermal damage visualization. Further studies on larger animal models are required.


Assuntos
Técnicas de Ablação , Mucosa Gástrica/patologia , Mucosa Gástrica/cirurgia , Terapia a Laser , Animais , Lasers de Estado Sólido , Microscopia Confocal , Modelos Animais , Ratos Wistar
16.
Surg Endosc ; 33(6): 1988-1997, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30327913

RESUMO

BACKGROUND: Arterial blood supply deficiency and venous congestion both play a role in anastomotic complications. Our aim was to evaluate a software-based analysis of the fluorescence signal to recognize the patterns of bowel ischemia. METHODS: In 18 pigs, two clips were applied on the inferior mesenteric artery (group A: n = 6) or vein (group V: n = 6) or on both (group A-V: n = 6). Three regions of interest (ROIs) were identified on the sigmoid: P = proximal to the first clip; C = central, between the two clips; and D = distal to the second clip. Indocyanine Green was injected intravenously. The fluorescence signal was captured by means of a near-infrared laparoscope. The time-to-peak (seconds) and the maximum fluorescence intensity were recorded using software. A normalized fluorescence intensity unit (NFIU: 0-to-1) was attributed, using a reference card. The NFIU's over-time variations were computed every 10 min for 50 min. Capillary lactates were measured on the sigmoid at the 3 ROIs. Various machine learning algorithms were applied for ischemia patterns recognition. RESULTS: The time-to-peak at the ischemic ROI C was significantly longer in group A versus V (20.1 ± 13 vs. 8.43 ± 3.7; p = 0.04) and in group A-V versus V (20.71 ± 11.6 vs. 8.43 ± 3.7; p = 0.03). The maximal NIFU at ROI C, was higher in the V group (1.01 ± 0.21) when compared to A (0.61 ± 0.11; p = 0.002) and A-V (0.41 ± 0.2; p = 0.0005). Capillary lactates at ROI C were lower in V (1.3 ± 0.6) than in A (1.9 ± 0.5; p = 0.0071), and A-V (2.6 ± 1.5; p = 0.034). The K nearest neighbor and the Linear SVM algorithms provided both an accuracy of 75% in discriminating between A versus V and 85% in discriminating A versus A-V. The accuracy dropped to 70% when the ML had to identify the ROI and the type of ischemia simultaneously. CONCLUSIONS: The computer-assisted dynamic analysis of the fluorescence signal enables the discrimination between different bowel ischemia models.


Assuntos
Artérias/patologia , Colite/patologia , Isquemia Mesentérica/patologia , Animais , Artérias/diagnóstico por imagem , Colite/diagnóstico por imagem , Corantes , Modelos Animais de Doenças , Interpretação de Imagem Assistida por Computador , Verde de Indocianina , Isquemia Mesentérica/diagnóstico por imagem , Reprodutibilidade dos Testes , Suínos
17.
Gastrointest Endosc ; 88(1): 168-174.e1, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29452076

RESUMO

BACKGROUND AND AIMS: EUS has become an interventional technique in which a needle may be used as a vehicle to deliver therapeutic agents. Laser ablation (LA) has been used to treat many primary and secondary neoplasms. This study aimed to assess the feasibility of EUS-guided LA for unresectable (UR) pancreatic cancer. METHODS: Patients with stage IIb-III pancreatic cancer underwent EUS-guided LA. All patients were unresponsive to previous chemoradiotherapy. LA was performed by using a 300-µm flexible fiber preloaded onto a 22-gauge fine needle. A 1064-nm wavelength neodymium-yttrium aluminum garnet (Nd:YAG) laser light with different power settings of 2 W for 800 J, 1000 J, and 1200 J; 3 W for 800 J, 1000 J, and 1200 J; and 4 W for 800 J, 1000 J, and 1200 J was used. Each patient was treated with a single application of 1 of these settings. The application time of the power settings ranged from 200 to 600 seconds. RESULTS: Nine patients (median age, 74.7; range 55-85) underwent Nd:Yag LA. The mean size of the focal lesion was 35.4 mm (range, 21-45). The ablation area, demonstrated by 24-hour CT, ranged from .4 cm3 (for the lower power setting of 2 W/800 J) to a maximum of 6.4 cm3 (for 4 W/1000 J). The procedure was completed in all 9 patients without adverse events. CONCLUSION: In our human experience, EUS-guided LA was feasible and well tolerated in patients with UR pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/cirurgia , Endossonografia/métodos , Terapia a Laser/métodos , Neoplasias Pancreáticas/cirurgia , Idoso , Idoso de 80 Anos ou mais , Alumínio , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/patologia , Estudos de Coortes , Estudos de Viabilidade , Feminino , Humanos , Lasers de Estado Sólido , Masculino , Pessoa de Meia-Idade , Neodímio , Estadiamento de Neoplasias , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Estudos Prospectivos , Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X , Ítrio
18.
J Surg Oncol ; 118(2): 265-282, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30076724

RESUMO

Imaging is one of the pillars for the ongoing evolution of surgical oncology toward a precision paradigm. In the present overview, some established or emerging intraoperative imaging technologies are described in light of the vision and experience of our group in image-guided surgery, focusing on digestive surgical oncology.


Assuntos
Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Cirurgia Assistida por Computador/instrumentação , Cirurgia Assistida por Computador/métodos , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Monitorização Intraoperatória/instrumentação , Monitorização Intraoperatória/métodos
19.
Int J Hyperthermia ; 35(1): 398-418, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30428728

RESUMO

PURPOSE: Pancreatic cancer is a challenging malignancy with low treatment option and poor life expectancy. Thermal ablation techniques were proposed as alternative treatment options, especially in advanced stages and for unfit-for-surgery patients. This systematic review describes the thermal ablative techniques -i.e., Laser (LA), Radiofrequency (RFA), Microwave (MWA) Ablation, High-Intensity Focused Ultrasound (HIFU) and cryoablation- available for pancreatic cancer treatment. Additionally, an analysis of the efficacy, complication rate and overall survival for each technique is conducted. MATERIAL AND METHODS: This review collects the ex vivo, preclinical and clinical studies presenting the use of thermal techniques in the pancreatic cancer treatment, searched up to March 2018 in PubMed and Medline. Abstracts, letters-to-the-editor, expert opinions, reviews and non-English language manuscripts were excluded. RESULTS: Sixty-five papers were included. For the ex vivo and preclinical studies, there are: 12 records for LA, 8 for RFA, 0 for MWA, 6 for HIFU, 1 for cryoablation and 3 for hybrid techniques. For clinical studies, 1 paper for LA, 14 for RFA, 1 for MWA, 17 for HIFU, 1 for cryoablation and 1 for hybrid techniques. CONCLUSIONS: Important technological advances are presented in ex vivo and preclinical studies, as the real-time thermometry, nanotechnology and hybrid techniques to enhance the thermal outcome. Conversely, a lack of standardization in the clinical employment of the procedures emerged, leading to contrasting results on the safety and feasibility of some analyzed techniques. Uniform conclusions on the safety and feasibility of these techniques for pancreatic cancer will require further structured investigation.


Assuntos
Técnicas de Ablação/métodos , Ablação por Cateter/métodos , Neoplasias Pancreáticas/terapia , Humanos , Neoplasias Pancreáticas/patologia , Resultado do Tratamento
20.
Int J Hyperthermia ; 34(8): 1372-1380, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29322853

RESUMO

OBJECTIVES: The palliative treatment of cholangiocarcinoma is based on stent placement with well-known procedure-related complications. Consequently, alternative energy-based techniques were put forward with controversial long-term results. This study aims to evaluate the safety and effectiveness of biliary tree laser ablation (LA) in terms of: (i) absence of perforation, (ii) temperature increase, (iii) induced thermal damage in in vivo models. MATERIALS AND METHODS: The common bile duct and cystic ducts of two pigs were ablated with a diode laser (circumferential irradiation pattern) for 6 and 3 min at 7 W. Laser settings were chosen from previous ex vivo experiments. Local temperature was monitored through a fibre Bragg grating (FBG) sensor embedded into the laser delivery probe. Histopathological analysis of the ablated specimen was performed through in situ endomicroscopy, haematoxylin and eosin (H&E) and nicotinamide adenine dinucleotide (NADH) stains. RESULTS: Temperature reached a plateau of 53 °C with consequent thermal damage on the application area, regardless of laser settings and application sites. No perforation was detected macroscopically or microscopically. At the H&E stain, wall integrity was always preserved. The NADH stain allowed to evaluate damage extension. It turned out that the ablation spreading width depended on application time and duct diameter. In situ endomicroscopy revealed a clear distinction between ablated and non-ablated areas. CONCLUSIONS: The temperature distribution obtained through LA proved to induce a safe and effective intraductal coagulative necrosis of biliary ducts. These results represent the basis for further experiments on tumour-bearing models for the treatment of obstructive cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares/cirurgia , Ductos Biliares/cirurgia , Colangiocarcinoma/cirurgia , Terapia a Laser , Animais , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA