Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 150(5): 934-47, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22939621

RESUMO

The factors that sequester transcriptionally repressed heterochromatin at the nuclear periphery are currently unknown. In a genome-wide RNAi screen, we found that depletion of S-adenosylmethionine (SAM) synthetase reduces histone methylation globally and causes derepression and release of heterochromatin from the nuclear periphery in Caenorhabditis elegans embryos. Analysis of histone methyltransferases (HMTs) showed that elimination of two HMTs, MET-2 and SET-25, mimics the loss of SAM synthetase, abrogating the perinuclear attachment of heterochromatic transgenes and of native chromosomal arms rich in histone H3 lysine 9 methylation. The two HMTs target H3K9 in a consecutive fashion: MET-2, a SETDB1 homolog, mediates mono- and dimethylation, and SET-25, a previously uncharacterized HMT, deposits H3K9me3. SET-25 colocalizes with its own product in perinuclear foci, in a manner dependent on H3K9me3, but not on its catalytic domain. This colocalization suggests an autonomous, self-reinforcing mechanism for the establishment and propagation of repeat-rich heterochromatin.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Núcleo Celular/química , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/genética , Cromossomos/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Genoma Helmíntico , Histona-Lisina N-Metiltransferase/análise , Histona-Lisina N-Metiltransferase/genética , Laminas/metabolismo , Metionina Adenosiltransferase/metabolismo , Metilação , Mutação
2.
EMBO J ; 40(21): e108439, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34569643

RESUMO

Upon replication stress, budding yeast checkpoint kinase Mec1ATR triggers the downregulation of transcription, thereby reducing the level of RNA polymerase (RNAP) on chromatin to facilitate replication fork progression. Here, we identify a hydroxyurea-induced phosphorylation site on Mec1, Mec1-S1991, that contributes to the eviction of RNAPII and RNAPIII during replication stress. The expression of the non-phosphorylatable mec1-S1991A mutant reduces replication fork progression genome-wide and compromises survival on hydroxyurea. This defect can be suppressed by destabilizing chromatin-bound RNAPII through a TAP fusion to its Rpb3 subunit, suggesting that lethality in mec1-S1991A mutants arises from replication-transcription conflicts. Coincident with a failure to repress gene expression on hydroxyurea in mec1-S1991A cells, highly transcribed genes such as GAL1 remain bound at nuclear pores. Consistently, we find that nuclear pore proteins and factors controlling RNAPII and RNAPIII are phosphorylated in a Mec1-dependent manner on hydroxyurea. Moreover, we show that Mec1 kinase also contributes to reduced RNAPII occupancy on chromatin during an unperturbed S phase by promoting degradation of the Rpb1 subunit.


Assuntos
Replicação do DNA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase III/genética , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/química , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Galactoquinase/genética , Galactoquinase/metabolismo , Regulação Fúngica da Expressão Gênica , Hidroxiureia/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas , Fosforilação , Proteínas Serina-Treonina Quinases/genética , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , Fase S/efeitos dos fármacos , Fase S/genética , Saccharomyces cerevisiae/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcrição Gênica
3.
Genes Dev ; 30(3): 337-54, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26798134

RESUMO

Little is known about how cells ensure DNA replication in the face of RNA polymerase II (RNAPII)-mediated transcription, especially under conditions of replicative stress. Here we present genetic and proteomic analyses from budding yeast that uncover links between the DNA replication checkpoint sensor Mec1-Ddc2 (ATR-ATRIP), the chromatin remodeling complex INO80C (INO80 complex), and the transcription complex PAF1C (PAF1 complex). We found that a subset of chromatin-bound RNAPII is degraded in a manner dependent on Mec1, INO80, and PAF1 complexes in cells exposed to hydroxyurea (HU). On HU, Mec1 triggers the efficient removal of PAF1C and RNAPII from transcribed genes near early firing origins. Failure to evict RNAPII correlates inversely with recovery from replication stress: paf1Δ cells, like ino80 and mec1 mutants, fail to restart forks efficiently after stalling. Our data reveal unexpected synergies between INO80C, Mec1, and PAF1C in the maintenance of genome integrity and suggest a mechanism of RNAPII degradation that reduces transcription-replication fork collision.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Replicação do DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética
4.
Mol Cell ; 57(2): 273-89, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25533186

RESUMO

Mec1-Ddc2 (ATR-ATRIP) controls the DNA damage checkpoint and shows differential cell-cycle regulation in yeast. To find regulators of Mec1-Ddc2, we exploited a mec1 mutant that retains catalytic activity in G2 and recruitment to stalled replication forks, but which is compromised for the intra-S phase checkpoint. Two screens, one for spontaneous survivors and an E-MAP screen for synthetic growth effects, identified loss of PP4 phosphatase, pph3Δ and psy2Δ, as the strongest suppressors of mec1-100 lethality on HU. Restored Rad53 phosphorylation accounts for part, but not all, of the pph3Δ-mediated survival. Phosphoproteomic analysis confirmed that 94% of the mec1-100-compromised targets on HU are PP4 regulated, including a phosphoacceptor site within Mec1 itself, mutation of which confers damage sensitivity. Physical interaction between Pph3 and Mec1, mediated by cofactors Psy2 and Ddc2, is shown biochemically and through FRET in subnuclear repair foci. This establishes a physical and functional Mec1-PP4 unit for regulating the checkpoint response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Pontos de Checagem do Ciclo Celular , Quinase do Ponto de Checagem 2/metabolismo , Replicação do DNA , Epistasia Genética , Regulação Fúngica da Expressão Gênica , Células HEK293 , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/citologia , Transdução de Sinais
5.
Mol Cell Proteomics ; 17(7): 1410-1425, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29669734

RESUMO

Secreted and cell-surface proteases are major mediators of extracellular matrix (ECM) turnover, but their mechanisms and regulatory impact are poorly understood. We developed a mass spectrometry approach using a cell-free ECM produced in vitro to identify fibronectin (FN) as a novel substrate of the secreted metalloprotease ADAMTS16. ADAMTS16 cleaves FN between its (I)5 and (I)6 modules, releasing the N-terminal 30 kDa heparin-binding domain essential for FN self-assembly. ADAMTS16 impairs FN fibrillogenesis as well as fibrillin-1 and tenascin-C assembly, thus inhibiting formation of a mature ECM by cultured fibroblasts. Furthermore ADAMTS16 has a marked morphogenetic impact on spheroid formation by renal tubule-derived MDCKI cells. The N-terminal FN domain released by ADAMTS16 up-regulates MMP3, which cleaves the (I)5-(I)6 linker of FN similar to ADAMTS16, therefore creating a proteolytic feed-forward mechanism. Thus, FN proteolysis not only regulates FN turnover, but also FN assembly, with potential long-term consequences for ECM assembly and morphogenesis.


Assuntos
Proteínas ADAMTS/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Morfogênese , Proteólise , Proteômica/métodos , Esferoides Celulares/metabolismo , Células 3T3 , Proteínas ADAMTS/química , Sequência de Aminoácidos , Animais , Colágeno/metabolismo , Cães , Fibroblastos/metabolismo , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato , Regulação para Cima
6.
Mol Cell ; 42(3): 330-41, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21549310

RESUMO

The Polycomb repressive complex 2 (PRC2) confers transcriptional repression through histone H3 lysine 27 trimethylation (H3K27me3). Here, we examined how PRC2 is modulated by histone modifications associated with transcriptionally active chromatin. We provide the molecular basis of histone H3 N terminus recognition by the PRC2 Nurf55-Su(z)12 submodule. Binding of H3 is lost if lysine 4 in H3 is trimethylated. We find that H3K4me3 inhibits PRC2 activity in an allosteric fashion assisted by the Su(z)12 C terminus. In addition to H3K4me3, PRC2 is inhibited by H3K36me2/3 (i.e., both H3K36me2 and H3K36me3). Direct PRC2 inhibition by H3K4me3 and H3K36me2/3 active marks is conserved in humans, mouse, and fly, rendering transcriptionally active chromatin refractory to PRC2 H3K27 trimethylation. While inhibition is present in plant PRC2, it can be modulated through exchange of the Su(z)12 subunit. Inhibition by active chromatin marks, coupled to stimulation by transcriptionally repressive H3K27me3, enables PRC2 to autonomously template repressive H3K27me3 without overwriting active chromatin domains.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Linhagem Celular , Cromatina/genética , Cristalografia por Raios X , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Humanos , Lisina/química , Metilação , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteína 4 de Ligação ao Retinoblastoma/química , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Transcrição Gênica
7.
J Cell Sci ; 127(Pt 5): 1079-91, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24424023

RESUMO

Cellular transformation into myofibroblasts is a central physiological process enabling tissue repair. Its deregulation promotes fibrosis and carcinogenesis. TGF-ß is the main inducer of the contractile gene program that drives myofibroblast differentiation from various precursor cell types. Crucial regulators of this transcriptional program are serum response factor (SRF) and its cofactor MKL1 (also known as MRTF-A). However, the exact mechanism of the crosstalk between TGF-ß signaling and MKL1 remains unclear. Here, we report the discovery of a novel MKL1 variant/isoform, MKL1_S, transcribed from an alternative promoter and uncover a novel translation start for the published human isoform, MKL1_L. Using a human adipose-derived mesenchymal stem cell differentiation model, we show that TGF-ß specifically upregulates MKL1_S during the initial phase of myofibroblast differentiation. We identified a functional N-terminal motif in MKL1_S that allows specific induction of a group of genes including the extracellular matrix (ECM) modifiers MMP16 and SPOCK3/testican-3. We propose that TGF-ß-mediated induction of MKL1_S initiates progression to later stages of differentiation towards a stationary myofibroblast.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Miofibroblastos/fisiologia , Proteínas de Fusão Oncogênica/metabolismo , Fator de Crescimento Transformador beta1/fisiologia , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Sequência de Bases , Núcleo Celular/metabolismo , Códon de Iniciação , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Metaloproteinase 16 da Matriz/genética , Metaloproteinase 16 da Matriz/metabolismo , Dados de Sequência Molecular , Proteínas de Fusão Oncogênica/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transativadores , Transcrição Gênica , Regulação para Cima
8.
Nucleic Acids Res ; 41(1): 518-32, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23125361

RESUMO

TRIM-NHL proteins are conserved regulators of development and differentiation but their molecular function has remained largely elusive. Here, we report an as yet unrecognized activity for the mammalian TRIM-NHL protein TRIM71 as a repressor of mRNAs. We show that TRIM71 is associated with mRNAs and that it promotes translational repression and mRNA decay. We have identified Rbl1 and Rbl2, two transcription factors whose down-regulation is important for stem cell function, as TRIM71 targets in mouse embryonic stem cells. Furthermore, one of the defining features of TRIM-NHL proteins, the NHL domain, is necessary and sufficient to target TRIM71 to RNA, while the RING domain that confers ubiquitin ligase activity is dispensable for repression. Our results reveal strong similarities between TRIM71 and Drosophila BRAT, the best-studied TRIM-NHL protein and a well-documented translational repressor, suggesting that BRAT and TRIM71 are part of a family of mRNA repressors regulating proliferation and differentiation.


Assuntos
RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células-Tronco Embrionárias/metabolismo , Células HEK293 , Humanos , Camundongos , MicroRNAs/metabolismo , Mutação Puntual , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Estabilidade de RNA , Proteínas de Ligação a RNA/antagonistas & inibidores , Ribonucleoproteínas/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética
9.
PLoS Genet ; 8(5): e1002727, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22654676

RESUMO

Silent information regulator proteins Sir2, Sir3, and Sir4 form a heterotrimeric complex that represses transcription at subtelomeric regions and homothallic mating type (HM) loci in budding yeast. We have performed a detailed biochemical and genetic analysis of the largest Sir protein, Sir4. The N-terminal half of Sir4 is dispensable for SIR-mediated repression of HM loci in vivo, except in strains that lack Yku70 or have weak silencer elements. For HM silencing in these cells, the C-terminal domain (Sir4C, residues 747-1,358) must be complemented with an N-terminal domain (Sir4N; residues 1-270), expressed either independently or as a fusion with Sir4C. Nonetheless, recombinant Sir4C can form a complex with Sir2 and Sir3 in vitro, is catalytically active, and has sedimentation properties similar to a full-length Sir4-containing SIR complex. Sir4C-containing SIR complexes bind nucleosomal arrays and protect linker DNA from nucleolytic digestion, but less effectively than wild-type SIR complexes. Consistently, full-length Sir4 is required for the complete repression of subtelomeric genes. Supporting the notion that the Sir4 N-terminus is a regulatory domain, we find it extensively phosphorylated on cyclin-dependent kinase consensus sites, some being hyperphosphorylated during mitosis. Mutation of two major phosphoacceptor sites (S63 and S84) derepresses natural subtelomeric genes when combined with a serendipitous mutation (P2A), which alone can enhance the stability of either the repressed or active state. The triple mutation confers resistance to rapamycin-induced stress and a loss of subtelomeric repression. We conclude that the Sir4 N-terminus plays two roles in SIR-mediated silencing: it contributes to epigenetic repression by stabilizing the SIR-mediated protection of linker DNA; and, as a target of phosphorylation, it can destabilize silencing in a regulated manner.


Assuntos
Genes Fúngicos Tipo Acasalamento , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Telômero/genética , Transcrição Gênica , Cromatina/genética , Quinases Ciclina-Dependentes , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Genes Fúngicos Tipo Acasalamento/genética , Mitose , Fosforilação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Ativação Transcricional
10.
Anal Chem ; 86(19): 9679-86, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25166916

RESUMO

The N-terminal tails of core histones harbor the sites of numerous post-translational modifications (PTMs) with important roles in the regulation of chromatin structure and function. Profiling histone PTM marks provides data that help understand the epigenetics events in cells and their connections with cancer and other diseases. Our previous study demonstrated that specific derivatization of histone peptides by NHS propionate significantly improved their chromatographic performance on reversed phase columns for LC/MS analysis. As a step forward, we recently developed a multiple reaction monitoring (MRM) based LC-MS/MS method to analyze 42 targeted histone peptides. By using stable isotopic labeled peptides as internal standards that are spiked into the reconstituted solutions, this method allows to measure absolute concentration of the tryptic peptides of H3 histone proteins extracted from cancer cell lines. The method was thoroughly validated for the accuracy and reproducibility through analyzing recombinant histone proteins and cellular samples. The linear dynamic range of the MRM assays was achieved in 3 orders of magnitude from 1 nM to 1 µM for all targeted peptides. Excellent intrabatch and interbatch reproducibility (<15% CV) was obtained. This method has been used to study translocated NSD2 (a histone lysine methyltransferase that catalyzes the histone lysine 36 methylation) function with its overexpression in KMS11 multiple myeloma cells. From the results we have successfully quantitated both individual and combinatorial histone marks in parental and NSD2 selective knockout KMS11 cells.


Assuntos
Histonas/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos
11.
PLoS Genet ; 6(11): e1001196, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21079689

RESUMO

Methylation of DNA and of Lysine 9 on histone H3 (H3K9) is associated with gene silencing in many animals, plants, and fungi. In Neurospora crassa, methylation of H3K9 by DIM-5 directs cytosine methylation by recruiting a complex containing Heterochromatin Protein-1 (HP1) and the DIM-2 DNA methyltransferase. We report genetic, proteomic, and biochemical investigations into how DIM-5 is controlled. These studies revealed DCDC, a previously unknown protein complex including DIM-5, DIM-7, DIM-9, CUL4, and DDB1. Components of DCDC are required for H3K9me3, proper chromosome segregation, and DNA methylation. DCDC-defective strains, but not HP1-defective strains, are hypersensitive to MMS, revealing an HP1-independent function of H3K9 methylation. In addition to DDB1, DIM-7, and the WD40 domain protein DIM-9, other presumptive DCAFs (DDB1/CUL4 associated factors) co-purified with CUL4, suggesting that CUL4/DDB1 forms multiple complexes with distinct functions. This conclusion was supported by results of drug sensitivity tests. CUL4, DDB1, and DIM-9 are not required for localization of DIM-5 to incipient heterochromatin domains, indicating that recruitment of DIM-5 to chromatin is not sufficient to direct H3K9me3. DIM-7 is required for DIM-5 localization and mediates interaction of DIM-5 with DDB1/CUL4 through DIM-9. These data support a two-step mechanism for H3K9 methylation in Neurospora.


Assuntos
Cromossomos Fúngicos/metabolismo , Metilação de DNA , Histona-Lisina N-Metiltransferase/metabolismo , Complexos Multienzimáticos/metabolismo , Neurospora crassa/enzimologia , Neurospora crassa/genética , Segregação de Cromossomos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Essenciais/genética , Genes Fúngicos/genética , Heterocromatina/metabolismo , Histona Metiltransferases , Histonas/metabolismo , Lisina/metabolismo , Modelos Biológicos , Ligação Proteica
12.
Biochim Biophys Acta ; 1783(8): 1536-43, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18381077

RESUMO

Hexose-6-phosphate dehydrogenase (H6PDH) has been shown to stimulate 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1)-dependent local regeneration of active glucocorticoids. Here, we show that coexpression with H6PDH results in a dramatic shift from 11beta-HSD1 oxidase to reductase activity without affecting the activity of the endoplasmic reticular enzyme 17beta-HSD2. Immunoprecipitation experiments revealed coprecipitation of H6PDH with 11beta-HSD1 but not with the related enzymes 11beta-HSD2 and 17beta-HSD2, suggesting a specific interaction between H6PDH and 11beta-HSD1. The use of the 11beta-HSD1/11beta-HSD2 chimera indicates that the N-terminal 39 residues of 11beta-HSD1 are sufficient for interaction with H6PDH. An important role of the N-terminus was indicated further by the significantly stronger interaction of 11beta-HSD1 mutant Y18-21A with H6PDH compared to wild-type 11beta-HSD1. The protein-protein interaction and the involvement of the N-terminus of 11beta-HSD1 were confirmed by Far-Western blotting. Finally, fluorescence resonance energy transfer (FRET) measurements of HEK-293 cells expressing fluorescently labeled proteins provided evidence for an interaction between 11beta-HSD1 and H6PDH in intact cells. Thus, using three different methods, we provide strong evidence that the functional coupling between 11beta-HSD1 and H6PDH involves a direct physical interaction of the two proteins.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Desidrogenases de Carboidrato/metabolismo , Retículo Endoplasmático/enzimologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , Far-Western Blotting , Desidrogenases de Carboidrato/análise , Desidrogenases de Carboidrato/isolamento & purificação , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Humanos , Imunoprecipitação , NADP/metabolismo , Domínios e Motivos de Interação entre Proteínas
13.
BMC Cell Biol ; 10: 53, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19604401

RESUMO

BACKGROUND: The serine/threonine protein kinase B (PKB/Akt) is involved in insulin signaling, cellular survival, and transformation. Carboxyl-terminal modulator protein (CTMP) has been identified as a novel PKB binding partner in a yeast two-hybrid screen, and appears to be a negative PKB regulator with tumor suppressor-like properties. In the present study we investigate novel mechanisms by which CTMP plays a role in apoptosis process. RESULTS: CTMP is localized to mitochondria. Furthermore, CTMP becomes phosphorylated following the treatment of cells with pervanadate, an insulin-mimetic. Two serine residues (Ser37 and Ser38) were identified as novel in vivo phosphorylation sites of CTMP. Association of CTMP and heat shock protein 70 (Hsp70) inhibits the formation of complexes containing apoptotic protease activating factor 1 and Hsp70. Overexpression of CTMP increased the sensitivity of cells to apoptosis, most likely due to the inhibition of Hsp70 function. CONCLUSION: Our data suggest that phosphorylation on Ser37/Ser38 of CTMP is important for the prevention of mitochondrial localization of CTMP, eventually leading to cell death by binding to Hsp70. In addition to its role in PKB inhibition, CTMP may therefore play a key role in mitochondria-mediated apoptosis by localizing to mitochondria.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/análise , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Células HeLa , Humanos , Proteínas de Membrana/análise , Mitocôndrias/química , Fosforilação , Estaurosporina/farmacologia , Tioléster Hidrolases , Vanadatos/farmacologia
14.
Nat Commun ; 8: 15398, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28530236

RESUMO

Thalidomide and its derivatives lenalidomide and pomalidomide (IMiDs) are effective treatments of haematologic malignancies. It was shown that IMiDs impart gain-of-function properties to the CUL4-RBX1-DDB1-CRBN (CRL4CRBN) ubiquitin ligase that enable binding, ubiquitination and degradation of key therapeutic targets such as IKZF1, IKZF3 and CSNK1A1. While these substrates have been implicated as efficacy targets in multiple myeloma (MM) and 5q deletion associated myelodysplastic syndrome (del(5q)-MDS), other targets likely exist. Using a pulse-chase SILAC mass spectrometry-based proteomics approach, we demonstrate that lenalidomide induces the ubiquitination and degradation of ZFP91. We establish ZFP91 as a bona fide IMiD-dependent CRL4CRBN substrate and further show that ZFP91 harbours a zinc finger (ZnF) motif, related to the IKZF1/3 ZnF, critical for IMiD-dependent CRBN binding. These findings demonstrate that single time point pulse-chase SILAC mass spectrometry-based proteomics (pSILAC MS) is a sensitive approach for target identification of small molecules inducing selective protein degradation.


Assuntos
Ubiquitina-Proteína Ligases/química , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Animais , Antineoplásicos/farmacologia , Deleção de Genes , Células HCT116 , Células HEK293 , Humanos , Lenalidomida/farmacologia , Espectrometria de Massas , Camundongos , Mieloma Múltiplo/metabolismo , Síndromes Mielodisplásicas/metabolismo , Peptídeo Hidrolases/química , Proteômica , Especificidade por Substrato , Ubiquitina/química , Ubiquitinação , Dedos de Zinco
15.
Nat Struct Mol Biol ; 24(2): 99-107, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28067915

RESUMO

Nucleosomes are essential for proper chromatin organization and the maintenance of genome integrity. Histones are post-translationally modified and often evicted at sites of DNA breaks, facilitating the recruitment of repair factors. Whether such chromatin changes are localized or genome-wide is debated. Here we show that cellular levels of histones drop 20-40% in response to DNA damage. This histone loss occurs from chromatin, is proteasome-mediated and requires both the DNA damage checkpoint and the INO80 nucleosome remodeler. We confirmed reductions in histone levels by stable isotope labeling of amino acids in cell culture (SILAC)-based mass spectrometry, genome-wide nucleosome mapping and fluorescence microscopy. Chromatin decompaction and increased fiber flexibility accompanied histone degradation, both in response to DNA damage and after artificial reduction of histone levels. As a result, recombination rates and DNA-repair focus turnover were enhanced. Thus, we propose that a generalized reduction in nucleosome occupancy is an integral part of the DNA damage response in yeast that provides mechanisms for enhanced chromatin mobility and homology search.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina , Dano ao DNA , Reparo do DNA , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Recombinação Genética , Saccharomyces cerevisiae/citologia
16.
Nat Struct Mol Biol ; 19(5): 471-7, S1, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22504884

RESUMO

DNA methylation, methylation of histone H3 at Lys9 (H3K9me3) and hypoacetylated histones are common molecular features of heterochromatin. Important details of their functions and inter-relationships remain unclear, however. In Neurospora crassa, H3K9me3 directs DNA methylation through a complex containing heterochromatin protein 1 (HP1) and the DNA methyltransferase DIM-2. We identified a distinct HP1 complex, HP1, CDP-2, HDA-1 and CHAP (HCHC), and found that it is responsible for silencing independently of DNA methylation. HCHC defects cause hyperacetylation of centromeric histones, greater accessibility of DIM-2 and hypermethylation of centromeric DNA. Loss of HCHC also causes mislocalization of the DIM-5 H3K9 methyltransferase at a subset of interstitial methylated regions, leading to selective DNA hypomethylation. We demonstrate that HP1 forms distinct DNA methylation and histone deacetylation complexes that work in parallel to assemble silent chromatin in N. crassa.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA , DNA Fúngico/metabolismo , Proteínas Fúngicas/metabolismo , Inativação Gênica , Histonas/metabolismo , Neurospora crassa/metabolismo , Acetilação , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , DNA Fúngico/genética , Proteínas Fúngicas/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Neurospora crassa/genética
17.
Cell Cycle ; 9(2): 350-63, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20046099

RESUMO

In budding yeast the evolutionarily conserved checkpoint response varies in its sensitivity to DNA damaging agents through the cell cycle. Specifically, higher amounts of damage are needed to activate the downstream checkpoint kinase Rad53 in S-phase cells. We examined here whether phosphorylation of Rad53 itself by cell cycle-dedicated kinases regulates Rad53 activation. We found that during unperturbed growth Rad53 exhibits a small phosphorylation-dependent electrophoretic mobility shift in G(2), M and G(1) phases of the cell cycle that is lost in S phase. We show that Rad53 is phosphorylated in vitro by Cdc5, a mitotic Polo-like kinase, and by the yeast cyclin-dependent kinase, Cdc28. Consistently, the cell cycle-dependent Rad53 mobility shift requires both Cdc5 and Cdc28 activities. We mapped the in vitro targeted phosphorylation sites by mass spectrometry and confirmed with mass spectroscopy that serines 774, 789 and 791 within Rad53 are phosphorylated in vivo in M-phase arrested cells. By creating nonphosphorylatable mutations in the endogenous RAD53 gene, we confirmed that the CDK and Polo kinase target sites are responsible for the observed cell cycle-dependent shift in protein mobility. The loss of phospho-acceptor sites does not interfere with Rad53 activation but accelerates checkpoint adaptation after induction of a single irreparable double-strand break. We thus demonstrate that cell cycle-dependent phosphorylation can fine-tune the response of Rad53 to DNA damage.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Divisão Celular , Quinase do Ponto de Checagem 2 , Dano ao DNA , Fase G1 , Mitose , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fase S , Proteínas de Saccharomyces cerevisiae/genética
18.
Cell Signal ; 21(5): 767-77, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19168126

RESUMO

Carboxyl-terminal modulator protein (CTMP) is a tumor suppressor-like binding partner of Protein kinase B (PKB/Akt) that negative regulates this kinase. In the course of our recent work, we identified that CTMP is consistently associated with leucine zipper/EF-hand-containing transmembrane-1 (LETM1). Here, we report that adenovirus-LETM1 increased the sensitivity of HeLa cells to apoptosis, induced by either staurosporine or actinomycin D. As shown previously, LETM1 localized to the inner mitochondrial membrane. Electron-microscopy analysis of adenovirus-LETM1 transduced cells revealed that mitochondrial cristae were swollen in these cells, a phenotype similar to that observed in optic atrophy type-1 (OPA1)-ablated cells. OPA1 cleavage was increased in LETM1-overexpressing cells, and this phenotype was reversed by overexpression of OPA1 variant-7, a cleavage resistant form of OPA1. Taken together, these data suggest that LETM1 is a novel binding partner for CTMP that may play an important role in mitochondrial fragmentation via OPA1-cleavage.


Assuntos
Apoptose , Proteínas de Ligação ao Cálcio/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Células HeLa , Humanos , Mitocôndrias/ultraestrutura , Tioléster Hidrolases
19.
EMBO Rep ; 6(10): 961-7, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16142218

RESUMO

Dicer is a key enzyme involved in RNA interference (RNAi) and microRNA (miRNA) pathways. It is required for biogenesis of miRNAs and small interfering RNAs (siRNAs), and also has a role in the effector steps of RNA silencing. Apart from Argonautes, no proteins are known to associate with Dicer in mammalian cells. In this work, we describe the identification of TRBP (human immunodeficiency virus (HIV-1) transactivating response (TAR) RNA-binding protein) as a protein partner of human Dicer. We show that TRBP is required for optimal RNA silencing mediated by siRNAs and endogenous miRNAs, and that it facilitates cleavage of pre-miRNA in vitro. TRBP had previously been assigned several functions, including inhibition of the interferon-induced double-stranded RNA-regulated protein kinase PKR and modulation of HIV-1 gene expression by association with TAR. The TRBP-Dicer interaction shown raises interesting questions about the potential interplay between RNAi and interferon-PKR pathways.


Assuntos
HIV-1/genética , MicroRNAs/metabolismo , Interferência de RNA/fisiologia , RNA Interferente Pequeno/metabolismo , Ribonuclease III/metabolismo , eIF-2 Quinase/genética , Linhagem Celular , Regulação Viral da Expressão Gênica , Genes Reguladores , Repetição Terminal Longa de HIV , Humanos , Imunoprecipitação , Interferons , MicroRNAs/biossíntese , RNA Interferente Pequeno/biossíntese , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Complexo de Inativação Induzido por RNA , Ribonuclease III/genética , Transativadores
20.
J Biol Chem ; 278(5): 3410-6, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12441345

RESUMO

The endogenous nitric oxide synthase inhibitors L-N(omega)-methylarginine and L-N(omega),N(omega)-dimethylarginine are catabolized by the enzyme dimethylargininase. Dimethylargininase-1 from bovine brain contains one tightly bound Zn(II) coordinated by two cysteine sulfur and two lighter ligands. Activity measurements showed that only the apo-enzyme is active and that the holo-enzyme is activated by zinc removal. In this work, the effect of NO on dimethylargininase-1 structure and its activity was investigated using 2-(N,N-dimethylamino)-diazenolate-2-oxide as an NO source. The results showed that whereas the holo-form was resistant to S-nitrosylation, the apo-form could be modified. The results of absorption spectroscopy, mass spectrometry, and fluorometric S-NO quantification revealed that two of five cysteine residues reacted with NO yielding cysteine-S-NO. The modification reaction is specific, because by liquid chromatography/mass spectrometry experiments of digested S-NO-dimethylargininase-1, cysteines 221 and 273 could be identified as cysteine-NO. Because Zn(II) protects the enzyme against nitrosation, it is suggested that both cysteines are involved in metal binding. However, specific cysteine-S-NO formation occurred in the absence of a characteristic sequence motif. Based on a structural model of dimethylargininase-1, the activation of both cysteines may be accomplished by the close proximity of charged residues in the tertiary structure of the enzyme.


Assuntos
Amidoidrolases/antagonistas & inibidores , Encéfalo/enzimologia , Cisteína/metabolismo , Zinco/farmacologia , Amidoidrolases/química , Amidoidrolases/genética , Amidoidrolases/ultraestrutura , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Temperatura Alta , Integrinas/fisiologia , Cinética , Ligantes , Mamíferos , Modelos Moleculares , Dados de Sequência Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Nitrosação , Fragmentos de Peptídeos/química , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA