Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(18): 7708-7714, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34473524

RESUMO

The recently discovered spin defects in hexagonal boron nitride (hBN), a layered van der Waals material, have great potential in quantum sensing. However, the photoluminescence and the contrast of the optically detected magnetic resonance (ODMR) of hBN spin defects are relatively low so far, which limits their sensitivity. Here we report a record-high ODMR contrast of 46% at room temperature and simultaneous enhancement of the photoluminescence of hBN spin defects by up to 17-fold by the surface plasmon of a gold film microwave waveguide. Our results are obtained with shallow boron vacancy spin defects in hBN nanosheets created by low-energy He+ ion implantation and a gold film microwave waveguide fabricated by photolithography. We also explore the effects of microwave and laser powers on the ODMR and improve the sensitivity of hBN spin defects for magnetic field detection. Our results support the promising potential of hBN spin defects for nanoscale quantum sensing.

2.
Adv Mater ; 35(12): e2205714, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35950446

RESUMO

Strain engineering is a promising way to tune the electrical, electrochemical, magnetic, and optical properties of 2D materials, with the potential to achieve high-performance 2D-material-based devices ultimately. This review discusses the experimental and theoretical results from recent advances in the strain engineering of 2D materials. Some novel methods to induce strain are summarized and then the tunable electrical and optical/optoelectronic properties of 2D materials via strain engineering are highlighted, including particularly the previously less-discussed strain tuning of superconducting, magnetic, and electrochemical properties. Also, future perspectives of strain engineering are given for its potential applications in functional devices. The state of the survey presents the ever-increasing advantages and popularity of strain engineering for tuning properties of 2D materials. Suggestions and insights for further research and applications in optical, electronic, and spintronic devices are provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA