Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Hyg Environ Health ; 222(4): 695-704, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31097324

RESUMO

To quantify the impact of fecal pollution on the microbiological bathing water quality, predictive modeling is being increasingly used in which the decay rate of the fecal indicators plays an important role. The decay of sewage-sourced enterococci and Escherichia coli culturable cells and their associated molecular markers (16SrRNA) quantified by Quantitative Reverse transcription PCR were measured in controlled microcosms as well in in situ conditions using different water types, from marine waters to fresh waters with intermediate salinity. All bacterial decays were fitted to a first order decay model. In the laboratory study, the light radiation was the most influent factor affecting E. coli and enterococci survival by culture methods although environmental conditions weakly impacted the decay of molecular markers. The results also indicated differential persistence of genetic markers and culturable organisms of fecal indicator bacteria in different water systems. For each bacteria indicator and analytical method, four equations were obtained to predict the time required to have a 90% reduction (T90) according irradiance, salinity and temperature parameters. The weighted model RMSE (Root Mean Square Error) calculated for all field experiments showed that quantification obtained with the equations defined by laboratory-based study compared reasonably well with in-situ observed quantification (0.4 and 0.2 log by standard culture methods for E. coli and Enterococcus spp. and 0.6 and 0.3 log by RT-qPCR for E. coli and Enterococcus spp. respectively). The modeling tool can be used to predict the presence of fecal pollution in marine and fresh waters in combination with either culture based- or rapid molecular methods.


Assuntos
Enterococcus/isolamento & purificação , Escherichia coli/isolamento & purificação , Água Doce/microbiologia , Água do Mar/microbiologia , Enterococcus/genética , Monitoramento Ambiental , Escherichia coli/genética , França , Marcadores Genéticos , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA