Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(41): e2221736120, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37801473

RESUMO

The design of quantum hardware that reduces and mitigates errors is essential for practical quantum error correction (QEC) and useful quantum computation. To this end, we introduce the circuit-Quantum Electrodynamics (QED) dual-rail qubit in which our physical qubit is encoded in the single-photon subspace, [Formula: see text], of two superconducting microwave cavities. The dominant photon loss errors can be detected and converted into erasure errors, which are in general much easier to correct. In contrast to linear optics, a circuit-QED implementation of the dual-rail code offers unique capabilities. Using just one additional transmon ancilla per dual-rail qubit, we describe how to perform a gate-based set of universal operations that includes state preparation, logical readout, and parametrizable single and two-qubit gates. Moreover, first-order hardware errors in the cavities and the transmon can be detected and converted to erasure errors in all operations, leaving background Pauli errors that are orders of magnitude smaller. Hence, the dual-rail cavity qubit exhibits a favorable hierarchy of error rates and is expected to perform well below the relevant QEC thresholds with today's coherence times.

2.
Phys Rev Lett ; 131(12): 120604, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37802953

RESUMO

We introduce fault-tolerant (FT) architectures for error correction with the XZZX cluster state based on performing measurements of two-qubit Pauli operators Z⊗Z and X⊗X, or fusions, on a collection of few-body entangled resource states. Our construction is tailored to effectively correct noise that predominantly causes faulty X⊗X measurements during fusions. This feature offers a practical advantage in linear optical quantum computing with dual-rail photonic qubits, where failed fusions only erase X⊗X measurement outcomes. By applying our construction to this platform, we find a record-high threshold to fusion failures exceeding 25% in the experimentally relevant regime of nonzero loss rate per photon, considerably simplifying hardware requirements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA