Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 232: 115107, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702190

RESUMO

This study presents the first integrated study on total Hg (THg) level in surface soil (SS), bottom soil (BS), stream sediments (SD), lake sediments (LS), stream water (SW), and lake water (LW) of Itacaiúnas River Watershed (IRW), Brazil to investigate the source and distribution of Hg in different environmental media considering contrasts of geological domains and sub-basins and its potential ecological and human risk. Hg content in most of the soils and sediments were above the upper crustal average values (56 µg/kg), however, when compared to the legal limits set by the Resolution CONAMA (Conselho Nacional de Meio Ambiente: soil 500 µg/kg; sediment 486 µg/kg), only 1 soil sample from Parauapebas sub-basin and 4 sediment samples from Violão Lake exceeded the limit. None of the SW and LW samples (<0.2 µg/L; CONAMA limit for Class II freshwater) are markedly contaminated by Hg. The SS and BS show similar contents and spatial distribution of Hg with higher contents being registered mostly in the Itacaiúnas and Parauapebas sub-basins, which are closely correlated with SD. This suggests that Hg levels are largely of geogenic origin and anthropogenic effect is highly limited. Principal Component Analysis (PCA) results show that Hg is strongly associated with total organic carbon (TOC), loss on ignition (LOI), and SO3, indicating organic matter as the main factor controlling the distribution of Hg and this is the major cause of accentuated Hg enrichment in lake sediments. The ecological risk index revealed a low pollution risk for most of the solid samples, except 11% LS and <1.5% SS and SD samples, which registered moderate risk. Health risk assessment indicated no adverse non-carcinogenic health effect on either adults and children in terms of Hg contamination. This information will be useful for Hg risk assessment in the Carajás region and future environmental research in this direction in the Amazonia.


Assuntos
Mercúrio , Poluentes Químicos da Água , Criança , Humanos , Mercúrio/análise , Brasil , Multimídia , Solo , Medição de Risco , Rios , Água , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Poluentes Químicos da Água/análise , China
2.
J Environ Manage ; 343: 118222, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37235991

RESUMO

Biochar, a promising carbon-rich and carbon-negative material, can control water pollution, harness the synergy of sustainable development goals, and achieve circular economy. This study examined the performance feasibility of treating fluoride-contaminated surface and groundwater using raw and modified biochar synthesized from agricultural waste rice husk as problem-fixing renewable carbon-neutral material. Physicochemical characterizations of raw/modified biochars were investigated using FESEM-EDAX, FTIR, XRD, BET, CHSN, VSM, pHpzc, Zeta potential, and particle size analysis were analyzed to identify the surface morphology, functional groups, structural, and electrokinetic behavior. In fluoride (F-) cycling, performance feasibility was tested at various governing factors, contact time (0-120 min), initial F- levels (10-50 mg L-1), biochar dose (0.1-0.5 g L-1), pH (2-9), salt strengths (0-50 mM), temperatures (301-328 K), and various co-occurring ions. Results revealed that activated magnetic biochar (AMB) possessed higher adsorption capacity than raw biochar (RB) and activated biochar (AB) at pH 7. The results indicated that maximum F- removal (98.13%) was achieved using AMB at pH 7 for 10 mg L-1. Electrostatic attraction, ion exchange, pore fillings, and surface complexation govern F- removal mechanisms. Pseudo-second-order and Freundlich were the best fit kinetic and isotherm for F- sorption, respectively. Increased biochar dose drives an increase in active sites due to F- level gradient and mass transfer between biochar-fluoride interactions, which reported maximum mass transfer for AMB than RB and AB. Fluoride adsorption using AMB could be described through chemisorption processes at room temperature (301 K), though endothermic sorption follows the physisorption process. Fluoride removal efficiency reduced, from 67.70% to 53.23%, with increased salt concentrations from 0 to 50 mM NaCl solutions, respectively, due to increased hydrodynamic diameter. Biochar was used to treat natural fluoride-contaminated surface and groundwater in real-world problem-solving measures, showed removal efficiency of 91.20% and 95.61%, respectively, for 10 mg L-1 F- contamination, and has been performed multiple times after systematic adsorption-desorption experiments. Lastly, techno-economic analysis was analyzed for biochar synthesis and F- treatment performance costs. Overall, our results revealed worth output and concluded with recommendations for future research on F- adsorption using biochar.


Assuntos
Água Subterrânea , Oryza , Poluentes Químicos da Água , Purificação da Água , Fluoretos , Oryza/química , Purificação da Água/métodos , Carvão Vegetal/química , Adsorção , Água Subterrânea/química , Cinética , Concentração de Íons de Hidrogênio
3.
Int J Health Plann Manage ; 37(1): 528-535, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34523171

RESUMO

The coronavirus disease-2019 (COVID-19) has emerged as a deadliest disease in the 21st century. Initially in India, this disease was concentrated in major urban cities like Mumbai, Delhi, Gujarat, and Chennai, which were the national hotspots for the COVID-19 pandemic. However, in subsequent months, returning migrants (mainly day labour) brought the disease back to their home; this vector triggered significant spread to semi-urban and rural areas. This highlighted serious concerns in rural India, where access to sophisticated healthcare and mitigation strategies were lacking. There is little data on this new pattern of disease spread. This article provides a short review for tracking the spread of COVID-19 into major rural states in India based on understanding urban-rural workforce migration relative to the growing proportion of the nation's COVID-19 caseload between May-September 2020.


Assuntos
COVID-19 , Emprego , Humanos , Índia , Pandemias , Políticas , SARS-CoV-2
4.
Environ Geochem Health ; 44(6): 1767-1781, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34676510

RESUMO

Mining activity is of great economic and social importance; however, volumes of metallic ore tailings rich in potentially toxic elements (PTEs) may be produced. In this context, managing this environmental liability and assessing soil quality in areas close to mining activities are fundamental. This study aimed to compare the concentrations of PTEs-arsenic (As), barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), molybdenum (Mo), nickel (Ni), lead (Pb) and zinc (Zn)-as well as the fertility and texture of Cu tailings and soils of native, urban and pasture areas surrounding a Cu mining complex in the eastern Amazon. The levels of PTEs were compared with soil prevention values, soil quality reference values, global average soil concentrations and average upper continental crust concentrations. The contamination factor (CF), degree of contamination (Cdeg), potential ecological risk index (RI), geoaccumulation index (Igeo) and pollution load index (PLI) were calculated. The levels of Co, Cu and Ni in the tailings area exceeded the prevention values, soil quality reference values and average upper continental crust concentrations; however, the tailings area was considered unpolluted according to PLI and RI and presented a low potential ecological risk. The high concentrations of PTEs are associated with the geological properties of the area, and the presence of PTEs-rich minerals supports these results. For the urban and pasture areas, none of the 11 PTEs analyzed exceeded the prevention values established by the Brazilian National Environment Council.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , China , Cobre , Monitoramento Ambiental/métodos , Metais Pesados/análise , Mineração , Medição de Risco , Solo , Poluentes do Solo/análise
5.
Int J Biometeorol ; 65(2): 205-222, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33034718

RESUMO

The present study aims to examine the changes in air quality during different phases of the COVID-19 pandemic, including the lockdown (LD1-4) and unlock period (UL1-2) (post-lockdown) as compared to pre-lockdown (PL1-3) and to establish the relationships of the environmental and demographic variables with COVID-19 cases in the state of Maharashtra, the worst-hit state in India. Atmospheric pollutants such as PM2.5, PM10, NOx, and CO were substantially reduced during the lockdown and unlock phases with the greatest reduction in cities having larger traffic volumes. Compared with the immediate pre-lockdown period (PL3), the averaged PM2.5 and PM10 reduced by up to 51% and 47% respectively during the lockdown periods, which resulted in 'satisfactory' level of air quality index (AQI) as a result of reduced vehicular traffic and industrial closing. These parameters continued to reduce as much as 80% during the unlock periods due to the additive impact of weather (rainfall and temperature) combined with the lockdown conditions. Kendall's correlation matrix showed a significant negative correlation between temperature and air pollutants (r= - 0.35 to - 057). Conversely, SO2 and O3 did not improve, and in some cases, they increased during the lockdown and unlocking. COVID-19 spreading incidences were strongly and positively correlated with temperature (r < 0.62) and dew point (r < 0.73). Thus, this indicates that the increase in temperature and dew point cannot weaken the transmission of this virus. The number of COVID-19 cases relative to air pollutants was negatively correlated (r = - 0.33 to - 0.74), which may be a mere coincidence as a result of lockdown. However, based on pre-lockdown air quality data and demographic factors, it was found that particulate matter (PM2.5 and PM10) and population density are closely linked with higher morbidity and mortality although a more in-depth research is required in this direction to validate this finding. The onset of COVID-19 has allowed us to determine that 'immediate' changes in air quality within densely populated/industrialized areas can improve livelihood based on pollution mitigation. These findings could be used by policymakers to set new benchmarks for air pollution that would improve the quality of life for major sectors of the World's population. COVID-19 has shown us that we can make changes when necessary, and findings may pave the way for future research to inform policy on the tough choices we will have to make between quality of life and survival. Also, our results will enrich the ongoing discussion on the role of environmental factors on the transmission of COVID-19 and will help to take necessary steps for its control.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Índia , Pandemias , Material Particulado/análise , Qualidade de Vida , SARS-CoV-2
6.
Environ Geochem Health ; 43(2): 733-755, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32026170

RESUMO

The groundwater quality of southwestern Punjab, India, is a serious cause of concern due to the presence of chemical contaminants in it. However, limited studies of groundwater quality, sources of chemical contaminants and their health risks are available for the region. Hence, this study was conducted to investigate the source, distribution and potential health risk assessment of groundwater quality in three districts of southwestern Punjab, India. The spatial distribution of groundwater chemical contaminants and their potential health risks have been illustrated using inverse distance weighting interpolation technique. The concentration of fluoride (F-; ranged from 0.08 to 4.79 mg L-1) exceeded the WHO limit (1.5 µg L-1) in 80 and 50% samples collected from Bathinda and Ludhiana districts, respectively. The uranium (U) concentration ranged from 0.5 to 432 µg L-1 and shows ~ 85%, 75% and 10% of samples collected from Bathinda, Barnala and Ludhiana districts exceeded the WHO drinking water limit (30 µg L-1), respectively. The groundwater quality of the Bathinda district is a matter of concern due to elevated levels of alkalinity, hardness, fluoride, uranium and nitrate (NO3-). The principal component analysis shows close association between F- and U, which indicates their geogenic origin. Further, they also seem to be subordinately influenced by diffuse anthropogenic activities. The clustering of Cu and Pb with NO3- and SO42- indicates their anthropogenic origin. The non-carcinogenic health risk assessment indicates that F-, NO3- and U are the major health risk pollutants in the study area. The carcinogenic health risk of As and Cr exceeded the USEPA limits (10-6) in the entire study area, but observed to be more serious for the district Bathinda (10-3-10-5). The spatial distribution maps illustrate that the health risk for Bathinda district inhabitants is higher than Barnala and Ludhiana districts.


Assuntos
Água Subterrânea/química , Poluentes Químicos da Água/toxicidade , Água Potável/análise , Monitoramento Ambiental/métodos , Fluoretos/análise , Humanos , Índia , Nitratos/análise , Medição de Risco , Urânio/análise , Poluentes Químicos da Água/análise
7.
Environ Monit Assess ; 193(5): 256, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33835289

RESUMO

Naturally elevated contents of copper (Cu) and nickel (Ni) are found in soils worldwide, and their potential toxicity is better understood when geochemical reactive fractions are identified and monitored. Thus, this study aimed to assess the bioavailability of Cu and Ni and estimate environmental risks in naturally metal-enriched soils of Carajás Mining Province, Eastern Amazon, Brazil. For that, 58 surficial soil samples were analyzed for their extractable contents of Cu and Ni by Mehlich 1. Next, 13 soil samples were selected for additional single and sequential extractions, for the determination of metal content in the shoots of grasses naturally growing in these soils and for calculating the risk assessment code. Despite the naturally high total concentrations, the contents of easily available Cu and Ni are a minor fraction of total concentrations (up to 10.15%), and the reducible oxide and residual pools hold the major proportion of total content of metals. This contributed to low bioavailability, low environmental risk, and also to low concentrations of these metals on grasses collected in the field. Soil organic matter, Fe2O3, Al2O3 and clay content have a dominant role in metals retention on studied soils. Our findings on the bioavailability of Cu and Ni in a region of great economic relevance for Brazil are important not only for predicting the elements' behavior in the soil-plant system but also for refining risk assessments and to provide useful data for environmental quality monitoring.


Assuntos
Metais Pesados , Poluentes do Solo , Disponibilidade Biológica , Brasil , Cobre/análise , Monitoramento Ambiental , Metais Pesados/análise , Níquel , Solo , Poluentes do Solo/análise
8.
Environ Geochem Health ; 42(12): 4245-4268, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32607702

RESUMO

The quality of drinking water and agricultural soil significantly affects the health of residents of the area. The quality of groundwater used as drinking and irrigation water along with agricultural soil of an agri-intensive region of the Sutlej River Basin (SRB), Punjab (India), has been investigated in the present paper to further access their impacts on human health. The quality parameters studied are pH, conductivity, cations, anions and trace elements/heavy metals. The spatio-distribution maps of major contaminates have been made. The distribution of major existing groundwater and agricultural soil contaminants has also been illustrated using inverse distance weighting interpolation technique. Further, the Pearson correlation matrix and principal component analysis (PCA) have been applied to explore the correlation and source apportionment analysis for the contaminants. Finally, the health risk assessment study has also been performed. The results showed elevated levels [compared to BIS acceptable limits] of bicarbonate and total hardness in more than 90% groundwater samples, while the concentration of Se and U exceeded in around 25% samples. Spatial distribution maps showed a non-homologous distribution pattern for most of the heavy metals except Zn, indicating their different origins. The significant existence of Se and U in groundwater and low content in soils indicated their geogenic origin. The Gibbs diagram suggested that rock-water interaction is the primary process controlling the chemical evolution of the groundwater in the region. The PCA indicated that Cu, Mn, Pb, NO3- and SO42- in groundwater have an anthropogenic origin, whereas Fe, As and U are mainly of geogenic origin. Significant positive correlations of heavy metals with Fe and Al in soils indicated scavenging of these elements by Fe/Al-oxyhydroxides minerals. Based on SAR, Na%, PI and corrosivity ratio analysis, it can be concluded that groundwater of the region is suitable for irrigation purposes Further, health risk assessment study indicated Cr and As are the possible cancer risk posing elements from both soil and groundwater. Non-carcinogenic risk assessment showed that cumulative exposure (hazard index-1.98) of U (HQ 1.21), NO3- (HQ 0.37) and F- (HQ 0.34) might pose harmful impacts to residents through groundwater ingestion in the long term. Although currently the contaminants in the groundwater-soil system may not pose any human health risks, continuous long-term monitoring is required to keep a check on the changes in their quality with time.


Assuntos
Agricultura , Exposição Ambiental , Água Subterrânea/análise , Rios/química , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Humanos , Índia , Metais Pesados/análise , Medição de Risco , Oligoelementos/análise , Poluentes Químicos da Água/análise
9.
Environ Geochem Health ; 42(1): 255-282, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31401754

RESUMO

A high-density regional-scale soil geochemical survey comprising 727 samples (one sample per each 5 × 5 km grid) was carried out in the Parauapebas sub-basin of the Brazilian Amazonia, under the Itacaiúnas Basin Geochemical Mapping and Background Project. Samples were taken from two depths at each site: surface soil, 0-20 cm and deep soil, 30-50 cm. The ground and sieved (< 75 µm) fraction was digested using aqua regia and analyzed for 51 elements by inductively coupled plasma mass spectrometry (ICPMS). All data were used here, but the principal focus was on the potential toxic elements (PTEs) and Fe and Mn to evaluate the spatial distribution patterns and to establish their geochemical background concentrations in soils. Geochemical maps as well as principal component analysis (PCA) show that the distribution patterns of the elements are very similar between surface and deep soils. The PCA, applied on clr-transformed data, identified four major associations: Fe-Ti-V-Sc-Cu-Cr-Ni (Gp-1); Zr-Hf-U-Nb-Th-Al-P-Mo-Ga (Gp-2); K-Na-Ca-Mg-Ba-Rb-Sr (Gp-3); and La-Ce-Co-Mn-Y-Zn-Cd (Gp-4). Moreover, the distribution patterns of elements varied significantly among the three major geological domains. The whole data indicate a strong imprint of local geological setting in the geochemical associations and point to a dominant geogenic origin for the analyzed elements. Copper and Fe in Gp-1 were enriched in the Carajás basin and are associated with metavolcanic rocks and banded-iron formations, respectively. However, the spatial distribution of Cu is also highly influenced by two hydrothermal mineralized copper belts. Ni-Cr in Gp-1 are highly correlated and spatially associated with mafic and ultramafic units. The Gp-2 is partially composed of high field strength elements (Zr, Hf, Nb, U, Th) that could be linked to occurrences of A-type Neoarchean granites. The Gp-3 elements are mobile elements which are commonly found in feldspars and other rock-forming minerals being liberated by chemical weathering. The background threshold values (BTV) were estimated separately for surface and deep soils using different methods. The '75th percentile', which commonly used for the estimation of the quality reference values (QRVs) following the Brazilian regulation, gave more restrictive or conservative (low) BTVs, while the 'MMAD' was more realistic to define high BTVs that can better represent the so-called mineralized/normal background. Compared with CONAMA Resolution (No. 420/2009), the conservative BTVs of most of the toxic elements were below the prevention limits (PV), except Cu, but when the high BTVs are considered, Cu, Co, Cr and Ni exceeded the PV limits. The degree of contamination (Cdeg), based on the conservative BTVs, indicates low contamination, except in the Carajás basin, which shows many anomalies and had high contamination mainly from Cu, Cr and Ni, but this is similar between surface and deep soils indicating that the observed high anomalies are strictly related to geogenic control. This is supported when the Cdeg is calculated using the high BTVs, which indicates low contamination. This suggests that the use of only conservative BTVs for the entire region might overestimate the significance of anthropogenic contamination; thus, we suggest the use of high BTVs for effective assessment of soil contamination in this region. The methodology and results of this study may help developing strategies for geochemical mapping in other Carajás soils or in other Amazonian soils with similar characteristics.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Brasil , Monitoramento Ambiental/estatística & dados numéricos , Sistemas de Informação Geográfica , Ferro/química , Metais Pesados/toxicidade , Análise Multivariada , Solo/química
10.
Sci Total Environ ; 912: 168930, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042179

RESUMO

The historical upland lake sediments in the Brazilian Amazon witnessed significant enrichment of total mercury (Hg). However, its spatio-temporal relationships between lakes and the main factors responsible for this enrichment are still poorly constrained. Given this, we geochemically investigated 12 radiometrically dated (extending back to ∼65 cal kyr BP) sediment cores from the Carajás plateau, Brazil. The Hg level in historical sediments presented a large temporal variability (from 1 to 3200 µg/kg), with maximum accumulation peaks observed between 30 and 45 cal kyr BP in core R2, LB3, and R1. However, the lack of the Hg peak in other cores (LV2 and LTI3) during the same period despite being proximity and non-correlation of these Hg peaks with the onset of major volcanic events indicates that this source has little bearing. Hg enrichment is highly dependent on the type of sedimentary facies, with higher values were associated with detritic facies (MI) and detritic+organic facies (P/M). Principal component analysis shows that aluminosilicate minerals and organic matter are essential hosts of Hg in sediments. The positive correlation between Al, Ti, and Hg in detritic facies and their strong coherence with Hg/TOC in R1, R5, LSL, ST02, and LB3 cores indicate that Hg is primarily of lithogenic origin. This can be substantiated by the higher background threshold value of Hg (574 µg/kg) in historical lake sediments compared to those in recent lake sediments (340 µg/kg). However, the most pronounced Hg peak (3200 µg/kg) in R2 around 45 cal kyr BP, which correlates positively with TOC, S, Se, As, and Mo indicates their diagenetic enrichment in organic-rich sediments under anoxic conditions. Thus, in addition to the lithogenic effect, it can be argued that diagenesis can play a significant role in prompting Hg enrichment in the Carajás lake sediments in Amazonia.

11.
Rev Environ Contam Toxicol ; 226: 1-32, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23625128

RESUMO

AMD is one of the critical environmental problems that causes acidification and metal contamination of surface and ground water bodies when mine materials and/or over burden-containing metal sulfides are exposed to oxidizing conditions. The best option to limit AMD is early avoidance of sulfide oxidation. Several techniques are available to achieve this. In this paper, we review all of the major methods now used to limit sulfide oxidation. These fall into five categories: (1) physical barriers,(2) bacterial inhibition, (3) chemical passivation, ( 4) electrochemical, and (5) desulfurization.We describe the processes underlying each method by category and then address aspects relating to effectiveness, cost, and environmental impact. This paper may help researchers and environmental engineers to select suitable methods for addressing site-specific AMD problems.Irrespective of the mechanism by which each method works, all share one common feature, i.e., they delay or prevent oxidation. In addition, all have limitations.Physical barriers such as wet or dry cover have retarded sulfide oxidation in several studies; however, both wet and dry barriers exhibit only short-term effectiveness.Wet cover is suitable at specific sites where complete inundation is established, but this approach requires high maintenance costs. When employing dry cover, plastic liners are expensive and rarely used for large volumes of waste. Bactericides can suppress oxidation, but are only effective on fresh tailings and short-lived, and do not serve as a permanent solution to AMD. In addition, application of bactericides may be toxic to aquatic organisms.Encapsulation or passivation of sulfide surfaces (applying organic and/or inorganic coatings) is simple and effective in preventing AMD. Among inorganic coatings,silica is the most promising, stable, acid-resistant and long lasting, as compared to phosphate and other inorganic coatings. Permanganate passivation is also promising because it creates an inert coating on the sulfide surface, but the mechanism by which this method works is still unclear, especially the role of pH. Coatings of Fe-oxyhydroxide, which can be obtained from locally available fly ash are receiving attention because of its low cost, self-healing character, and high cementation capacity. Among organic coatings, lipids and natural compounds such as humic acid appear to be encouraging because they are effective, and have a low environmental impact and cost. Common advantages of organic vs. inorganic coatings are that they work best at low pH and can prevent both chemical and biological oxidation.However, organic coatings are more expensive than inorganic coatings. Furthermore,while organic coatings are effective under laboratory conditions, they often fail under field conditions or require large amounts of reagents to insure effectiveness.Electrochemical cover technology may become a suitable technique to prevent AMD, but the mechanism by which this technique operates is still under investigation.Limitations of this method include the initial capital cost and ongoing costs of anodes and cathodes.Desulfurization is an alternative process for managing large-scale sulfide wastes/tailings. This process can separate sulfide minerals into a low-volume stream, leaving mainly waste with low sulfur content that will be non-acid-generating. The attractiveness of desulfurization is that it is simple and economic.Our review has clearly disclosed that more information is needed for most of the AMD-mitigation techniques available. Silica passivation has shown promise, butmore extensive field-testing is needed to reduce it to commercial viability. Silica is the dominant element in fly ash, and therefore, its use as a low-cost, easily accessible coating should be evaluated. Permanganate passivation also requires further study to understand the role of pH. The secondary formation of Fe-oxyhydroxide minerals from Fe-oxyhydroxides, from the standpoint of their phase transformation,stability and effectiveness, should be assessed over longer experimental periods. All inorganic coatings are designed to inhibit abiotic oxidation of pyrite; however, their effect on biotic pyrite oxidation is not well known and should be further studied.Currently, there is no information available on longer-term field application of organic reagents. Such information is needed to evaluate their lifetime environmental and performance effects. Future studies require spectroscopic analyses of all coating types to achieve a better understanding of their surface chemistry. In addition,a thorough mineralogical and geochemical characterization of waste materialsis essential to understand the acid generating potential, which can indeed help to select better prevention measures.From having performed this review, we have concluded that no single method is technologically mature, although the majority of methods employed are promising for some applications, or at specific sites. Combining techniques can help ac~Ie:eAMD containment in some cases. For example, applying dry cover (e.g., sml) mcombination with liming material or a bactericide, or applying inorganic coatings(e.g., silica) along with organic reagents (e.g., lipids or humic acid) may be moreeffective than utilizing any single technique alone.


Assuntos
Minerais/química , Mineração , Sulfetos/química , Poluentes Químicos da Água/toxicidade , Poluição Química da Água/prevenção & controle , Drenagem , Compostos de Manganês/química , Óxidos/química , Dióxido de Silício/química
12.
Environ Pollut ; 319: 120937, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608723

RESUMO

Over the last several decades, extensive and inefficient use of contemporary technologies has resulted in substantial environmental pollution, predominantly caused by potentially hazardous elements (PTEs), like heavy metals that severely harm living species. To combat the presence of heavy metals (HMs) in the agrarian system, biochar becomes an attractive approach for stabilizing and limiting availability of HMs in soils due to its high surface area, porosity, pH, aromatic structure as well as several functional groups, which mostly rely on the feedstock and pyrolysis temperature. Additionally, agricultural waste-derived biochar is an effective management option to ensure carbon neutrality and circular economy while also addressing social and environmental concerns. Given these diverse parameters, the present systematic evaluation seeks to (i) ascertain the effectiveness of heavy metal immobilization by agro waste-derived biochar; (ii) examine the presence of biochar on soil physico-chemical, and thermal properties, along with microbial diversity; (iii) explore the underlying mechanisms responsible for the reduction in heavy metal concentration; and (iv) possibility of biochar implications to advance circular economy approach. The collection of more than 200 papers catalogues the immobilization efficiency of biochar in agricultural soil and its impacts on soil from multi-angle perspectives. The data gathered suggests that pristine biochar effectively reduced cationic heavy metals (Pb, Cd, Cu, Ni) and Cr mobilization and uptake by plants, whereas modified biochar effectively reduced As in soil and plant systems. However, the exact mechanism underlying is a complex biochar-soil interaction. In addition to successfully immobilizing heavy metals in the soil, the application of biochar improved soil fertility and increased agricultural productivity. However, the lack of knowledge on unfavorable impacts on the agricultural systems, along with discrepancies between the use of biochar and experimental conditions, impeded a thorough understanding on a deeper level.


Assuntos
Metais Pesados , Poluentes do Solo , Ecossistema , Poluentes do Solo/análise , Metais Pesados/análise , Carvão Vegetal/química , Solo/química
13.
Environ Pollut ; 329: 121595, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059169

RESUMO

The expansion of areas of human occupation and the increase in economic activity and deforestation are negatively impacting the Amazon ecosystem. Situated in the Carajás Mineral Province in the southeastern Amazon, the Itacaiúnas River Watershed (IRW) encompasses several active mines and has a historical record of intense deforestation primarily linked with the expansion of pasturelands, but also of urban areas, and mining activities. Industrial mining projects are subjected to strict environmental control, but artisanal mining (ASM; 'garimpos') sites have not been controlled, despite their known environmental impacts. In recent years, the opening and expansion of ASM in the IRW for the exploitation of mineral resources (Au, Mn, and Cu) have been remarkable. This study presents evidence of anthropogenic impacts, mainly caused by ASM, on the quality and hydrogeochemical characteristics of the IRW surface water. The hydrogeochemical data sets of two projects carried out in the IRW, during 2017 and from 2020 until present, were used to evaluate these impacts within the region. Water quality indices were calculated for the surface water samples. For the whole IRW, water collected during the dry season tended to yield better quality indicators in comparison to those collected during the rainy season. Two sampling sites at Sereno Creek showed very poor water quality and extremely high concentrations of Fe, Al, and potentially toxic elements over time. From 2016 to 2022, ASM sites increased markedly. Moreover, there are indications that Mn exploitation via ASM in Sereno hill is the main source of contamination in the area. New trends of ASM expansion were observed along the main watercourses, related to the exploitation of Au from alluvial deposits. Similar anthropogenic impacts are registered in other regions of the Amazon and environmental monitoring should be encouraged to assess the chemical safety of strategic areas.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Humanos , Ecossistema , Monitoramento Ambiental , Rios , Minerais , Poluentes Químicos da Água/análise
14.
Sci Total Environ ; 807(Pt 2): 151753, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34822893

RESUMO

Despite numerous studies, there are many knowledge gaps in our understanding of uranium (U) contamination in the alluvial aquifers of Punjab, India. In this study, a large hydrogeochemical dataset was compiled to better understand the major factors controlling the mobility and enrichment of uranium (U) in this groundwater system. The results showed that shallow groundwaters (<60 m) are more contaminated with U than from deeper depths (>60 m). This effect was predominant in the Southwest districts of the Malwa, facing significant risk due to chemical toxicity of U. Groundwaters are mostly oxidizing and alkaline (median pH: 7.25 to 7.33) in nature. Spearman correlation analysis showed that U concentrations are more closely related to total dissolved solids (TDS), salinity, Na, K, HCO3-, NO3- Cl-, and F- in shallow water than deep water, but TDS and salinity remained highly correlated (U-TDS: ρ = 0.5 to 0.6; U-salinity: ρ = 0.5). This correlation suggests that the salt effect due to high competition between ions is the principal cause of U mobilization. This effect is evident when the U level increased with increasing mixed water species (Na-Cl, Mg-Cl, and Na-HCO3). Speciation data showed that the most dominant U species are Ca2UO2(CO3)2- and CaUO2(CO3)3-, which are responsible for the U mobility. Based on the field parameters, TDS along with pH and oxidation-reduction potential (ORP) were better fitted to U concentration above the WHO guideline value (30 µg.L-1), thus this combination could be used as a quick indicator of U contamination. The strong positive correlation of U with F- (ρ = 0.5) in shallow waters indicates that their primary source is geogenic, while anthropogenic factors such as canal irrigation, groundwater table decline, and use of agrochemicals (mainly nitrate fertilizers) as well as climate-related factors i.e., high evaporation under arid/semi-arid climatic conditions, which result in higher redox and TDS/salinity levels, may greatly affect enrichment of U. The geochemical rationale of this study will provide Science-based-policy implications for U health risk assessment in this region and further extrapolate these findings to other arid/semi-arid areas worldwide.


Assuntos
Água Subterrânea , Urânio , Efeitos Antropogênicos , Índia
15.
Sci Total Environ ; 828: 154327, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276167

RESUMO

Trace elements (TE) contamination in forested areas of the Itacaiúnas River Watershed (IRW), Brazilian Amazon, arouses growing interest owing to the rapid deforestation and mining activities. In this study, soils (surface, SS; bottom, BS) and stream sediments (SD) from forested/deforested areas of IRW were analyzed with the aim of (1) evaluating the major sources of TE (mainly As, Ba, Cd, Cu, Co, Cr, Hg, Mo, Mn, Ni, Pb, V, and Zn), and (2) examining the soil-sediment TE link related to land-use change and/or geologic factors. Compositional data analysis (CoDA) was used to eliminate data closure issues and the centred log-ratio (clr) transformation yielded better results in Principal Component Analysis (PCA). The TE distribution pattern was significantly different (p < 0.05) between forested and deforested areas, but in both areas the TE distribution pattern is significantly correlated between SS, BS, and SD, indicating a strong lithogenic control. PCA (clr-transformed) identified the major geochemical bedrock signature as Fe-Ti-V-Cu-Cr-Ni, which is nearly similar in soil and sediments. The more accentuated enrichment and the maximum number of anomalies of these elements were found in the Carajás Basin and are highly coincident with mineral deposits/local lithologies without clear indication of anthropogenic contamination from point sources. Besides geogenic factors, deforestation is also affecting TE distribution in the basin. In deforested areas, Mn was significantly enriched in the surface horizon. Furthermore, linear regression analysis shows stronger TE relationships between soils and sediments in deforested areas than in forested ones, reflecting higher erosion in the former. This could be the reason for the relatively higher enrichment of TE (e.g., Fe, Mn, Cu, Cr, Ni) in deforested sediments. The TE contamination using regional background values provides more accurate results than worldwide reference values. Thus, the former should be considered for a more realistic environmental risk assessment in IRW and other forest ecosystems in the Brazilian Amazon.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Brasil , Ecossistema , Monitoramento Ambiental/métodos , Florestas , Sedimentos Geológicos , Metais Pesados/análise , Rios , Solo , Oligoelementos/análise , Poluentes Químicos da Água/análise
17.
Pathogens ; 10(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34451467

RESUMO

Currently, there is a massive debate on whether meteorological and air quality parameters play a crucial role in the transmission of COVID-19 across the globe. With this background, this study aims to evaluate the impact of air pollutants (PM2.5, PM10, CO, NO, NO2, and O3) and meteorological parameters (temperature, humidity, wind speed, and rainfall) on the spread and mortality due to the COVID-19 outbreak in Delhi from 14 Mar 2020 to 3 May 2021. The Spearman's rank correlation method employed on secondary data shows a significant correlation between the COVID-19 incidences and the PM2.5, PM10, CO, NO, NO2, and O3 concentrations. Amongst the four meteorological parameters, temperature is strongly correlated with COVID-19 infections and deaths during the three phases, i.e., pre-lockdown (14 March 2020 to 24 March 2020) (r = 0.79), lockdown (25 March 2020 to 31 May 2020) (r = 0.87), and unlock (1 June 2020 to 3 May 2021) (r = -0.75), explaining the variability of about 20-30% in the lockdown period and 18-19% in the unlock period. NO2 explained the maximum variability of 10% and 7% in the total confirmed cases and deaths among the air pollutants, respectively. A generalized linear model could explain 80% and 71% of the variability in confirmed cases and deaths during the lockdown and 82% and 81% variability in the unlock phase, respectively. These findings suggest that these factors may contribute to the transmission of the COVID-19 and its associated deaths. The study results would enhance the ongoing research related to the influence of environmental factors. They would be helpful for policymakers in managing the outbreak of COVID-19 in Delhi, India.

18.
Int J Biol Macromol ; 140: 496-504, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31437511

RESUMO

A novel eco-friendly approach is highlighted for synthesizing chicken eggshell powder (EP) modified starch-g-poly(N-isopropylacrylamide) (starch-g-PNIPAAm) bionanocomposites (BNCs) by emulsifier-free emulsion polymerisation and aiming to study the effect of EP on the properties of modified starch BNCs. Young's modulus and tensile strength of BNCs are found to be improved dramatically. The enhanced char forming ability of EP improves the thermal stability of BNCs at high temperature as investigated by thermogravimetric analyses carried out in inert atmosphere. The cone calorimeter test revealed that the 4% w/v EP-based BNC resulted suppression on fire hazards in terms of reduction in PHRR (decreased by 33.3%), PSPR (decreased by 75.3%) compared with those of the control starch-g-PNIPAAm and could be attributed to the insulating barrier effect of EP. In addition, the fire retardancy of the BNCs is investigated from limiting oxygen index (LOI) test. The surface morphology and the elemental content of the collected char residues of BNCs after fire retardant test is analysed by FESEM and EDX. Further the oxygen barrier property of BNC with 4% w/v EP is reduced by 73% compared to starch-g-PNIPAAm. The resulting nanostructure and molecular interactions in the BNCs are analysed by FTIR, XRD and TEM.


Assuntos
Materiais Biocompatíveis/química , Retardadores de Chama/síntese química , Nanoestruturas/química , Amido/química , Resinas Acrílicas/síntese química , Resinas Acrílicas/química , Animais , Materiais Biocompatíveis/síntese química , Casca de Ovo/química , Oxigênio/química , Pós/síntese química , Pós/química , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/síntese química , Temperatura , Resistência à Tração , Termogravimetria
19.
Int J Biol Macromol ; 122: 1184-1190, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30218734

RESUMO

This work focuses on developing some composites of desirable properties mainly for heavy metal ion adsorption from the water bodies leading to water remediation. Adsorption of Cr(VI) by a novel biopolymer-based hybrid nanocomposite material has been synthesized via emulsifier-free emulsion polymerisation technique and investigated its assess as proposed use. Chitosan is a biocompatible, biodegradable and non-toxic material, hence this biopolymer has been selected in this research work. The chemical modification of the biopolymer chitosan has been achieved via grafting of poly(methyl methacrylate) (PMMA) and crosslinker silica gel was added in order to improve the mechanical strength of the nanocomposite in nitrogen atmosphere taking ammonium persulphate as initiator. The resulting composite samples were characterized by using XRD, FTIR, SEM and TEM. Further, the biodegradability of the samples was studied at different time intervals from 15days to 6months and the so produced nanocomposite exhibited good biodegradability. Adsorption of Chromium (Cr) was investigated by varying the contact time between the adsorbate (Cr), the nanocomposite, pH of the solution and the doses of the composite. The optimum result for chromium removal was found at pH-4 and this result showed its use efficiently for the treatment of wastewater containing Cr (VI).


Assuntos
Quitosana/química , Cromo/química , Nanocompostos/química , Polimerização , Polimetil Metacrilato/química , Dióxido de Silício/química , Poluentes Químicos da Água/química , Adsorção , Cromo/isolamento & purificação , Emulsões , Química Verde , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA