Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
BMC Vet Res ; 20(1): 127, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561720

RESUMO

BACKGROUND: Pseudomonas putida is a pathogenic bacterium that induces great losses in fishes, including Nile tilapia (Oreochromis niloticus). Currently, the application of nanomaterials in aquaculture practices has gained more success as it endows promising results in therapies compared to traditional protocols. OBJECTIVE: Therefore, the current perspective is considered the first report to assess the anti-bacterial efficacy of titanium dioxide nanogel (TDNG) against Pseudomonas putida (P. putida) in Nile tilapia. METHODS: The fish (n = 200; average body weight: 47.50±1.32 g) were allocated into four random groups (control, TDNG, P. putida, and TDNG + P. putida), where 0.9 mg/L of TDNG was applied as bath treatment for ten days. RESULTS: Outcomes revealed that P. putida infection caused ethological alterations (surfacing, abnormal movement, and aggression) and depression of immune-antioxidant variables (complement 3, lysozyme activity, total antioxidant capacity, superoxide dismutase, and reduced glutathione content). Additionally, a substantial elevation in hepatorenal biomarkers (aspartate and alanine aminotransferases and creatinine) with clear histopathological changes and immuno-histochemical alterations (very weak BCL-2 and potent caspase-3 immuno-expressions) were seen. Surprisingly, treating P. putida-infected fish with TDNG improved these variables and obvious restoration of the tissue architectures. CONCLUSION: Overall, this report encompasses the key role of TDNG as an anti-bacterial agent for controlling P. putida infection and improving the health status of Nile tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Polietilenoglicóis , Polietilenoimina , Pseudomonas putida , Titânio , Animais , Antioxidantes , Nanogéis , Dieta , Suplementos Nutricionais , Ração Animal/análise , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia
2.
Drug Dev Ind Pharm ; 47(4): 663-672, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33826458

RESUMO

WHO considers praziquantel (PZQ) as the drug of choice for treatment of Schistosoma mansoni infection but this requires high dose due to poor solubility and first pass metabolism. The aim of this work was to optimize nanostructured lipid carriers (NLCs) for enhanced PZQ oral delivery. The optimization involved testing the effect of surface charge of NLCs. NLCs comprised precirol ATO as solid lipid with oleic acid, Span 60 and Tween 80 as liquid components. Dicetyl phosphate and stearyl amine were the negative and positive charging agents, respectively. NLCs were prepared by microemulsification technique and were characterized. The schistosomicidal activity of PZQ loaded NLCs was monitored in vitro and in vivo using infected mice. PZQ showed high entrapment efficiency in all types of NLCs (ranged from 93.97 to 96.29%) with better PZQ loading in standard NLCs. This was clarified by thermal analysis which reflected displacement of PZQ by charging agents. In vitro schistosomicidal study revealed the superiority of PZQ loaded positively charged NLCs (LC50 and LC95 equal 0.147 and 0.193 µg/ml respectively) with traditional and negatively charged NLCs being inferior to simple PZQ solution after short incubation period. Scanning electron micrographs showed that PZQ loaded positively charged NLCs resulted in more intense ultrastructural changes in worms. The superiority of positively charged NLCs was confirmed by in vivo assessment as they showed better improvement in histopathological features of the liver of the infected mice compared with other formulations. The study introduced positively charged NLCs as promising carriers for oral delivery of PZQ.


Assuntos
Nanoestruturas , Esquistossomicidas , Animais , Portadores de Fármacos , Lipídeos , Camundongos , Praziquantel/farmacologia , Esquistossomicidas/farmacologia
3.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30068639

RESUMO

The adenovirus E3 region encodes proteins that are not essential for viral replication in vitro The porcine adenovirus type 3 (PAdV-3) E3 region encodes three proteins, including 13.7K. Here, we report that 13.7K is expressed as an early protein, which localizes to the nucleus of infected cells. The 13.7K protein is a structural protein, as it is incorporated in CsCl-purified virions. The 13.7K protein appears to be essential for PAdV-3 replication, as mutant PAV13.73A expressing a mutated 13.7K could be isolated only in VIDO AS2 cells expressing the 13.7K protein. Analysis of PAV13.73A suggested that even in the presence of reduced levels of some late viral proteins, there appeared to be no effect on virus assembly and production of mature virions. Further analysis of CsCl-purified PAV13.73A by transmission electron microscopy revealed the presence of disrupted/broken capsids, suggesting that inactivation of 13.7K protein expression may produce fragile capsids. Our results suggest that the PAdV-3 E3 region-encoded 13.7K protein is a capsid protein, which appears to be essential for the formation of stable capsids and production of infectious progeny virions.IMPORTANCE Although E3 region-encoded proteins are involved in the modulation of leukocyte functions (N. Arnberg, Proc Natl Acad Sci U S A 110:19976-19977, 2013) and inducing a lytic infection of lymphocytes (V. K. Murali, D. A. Ornelles, L. R. Gooding, H. T. Wilms, W. Huang, A. E. Tollefson, W. S. Wold, and C. Garnett-Benson, J Virol 88:903-912, 2014), none of the E3 proteins appear to be a component of virion capsid or required for replication of adenovirus. Here, we demonstrate that the 13.7K protein encoded by the E3 region of porcine adenovirus type 3 is a component of progeny virion capsids and appears to be essential for maintaining the integrity of virion capsid and production of infectious progeny virions. To our knowledge, this is the first report to suggest that an adenovirus E3-encoded protein is an essential structural protein.


Assuntos
Adenovirus Suínos/fisiologia , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Proteínas Mutantes/metabolismo , Adenovirus Suínos/ultraestrutura , Animais , Capsídeo/ultraestrutura , Proteínas do Capsídeo/genética , Linhagem Celular , Humanos , Viabilidade Microbiana , Microscopia Eletrônica de Transmissão , Proteínas Mutantes/genética , Estabilidade Proteica , Suínos
4.
Virol J ; 14(1): 154, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28807043

RESUMO

Rift Valley fever virus (RVFV) is an arthropod-borne bunyavirus that can cause serious and fatal disease in humans and animals. RVFV is a negative-sense RNA virus of the Phlebovirus genus in the Bunyaviridae family. The main envelope RVFV glycoproteins, Gn and Gc, are encoded on the M segment of RVFV and known inducers of protective immunity. In an attempt to develop a safe and efficacious RVF vaccine, we constructed and tested a vectored equine herpesvirus type 1 (EHV-1) vaccine that expresses RVFV Gn and Gc. The Gn and Gc genes were custom-synthesized after codon optimization and inserted into EHV-1 strain RacH genome. The rH_Gn-Gc recombinant virus grew in cultured cells with kinetics that were comparable to those of the parental virus and stably expressed Gn and Gc. Upon immunization of sheep, the natural host, neutralizing antibodies against RVFV were elicited by rH_Gn-Gc and protective titers reached to 1:320 at day 49 post immunization but not by parental EHV-1, indicating that EHV-1 is a promising vector alternative in the development of a safe marker RVFV vaccine.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vetores Genéticos , Herpesvirus Equídeo 1/genética , Vírus da Febre do Vale do Rift/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/genética , Ovinos , Doenças dos Ovinos/prevenção & controle , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
5.
J Virol ; 88(21): 12802-15, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25165105

RESUMO

UNLABELLED: Equine herpesvirus type 1 (EHV-1) downregulates cell surface expression of major histocompatibility complex class I (MHC-I) in infected cells. We have previously shown that pUL56 encoded by the EHV-1 ORF1 gene regulates the process (G. Ma, S. Feineis, N. Osterrieder, and G. R. Van de Walle, J. Virol. 86:3554-3563, 2012, doi:http://dx.doi.org/10.1128/JVI.06994-11). Here, we report that cell surface MHC-I in EHV-1-infected cells is internalized and degraded in the lysosomal compartment in a pUL56-dependent fashion. pUL56-induced MHC-I endocytosis required dynamin and tyrosine kinase but was independent of clathrin and caveolin-1, the main constituents of the clathrin- and raft/caveola-mediated endocytosis pathways, respectively. Downregulation of cell surface MHC-I was significantly inhibited by the ubiquitin-activating enzyme E1 inhibitor PYR41, indicating that ubiquitination is essential for the process. Finally, we show that downregulation is not specific for MHC-I and that other molecules, including CD46 and CD63, are also removed from the cell surface in a pUL56-dependent fashion. IMPORTANCE: We show that alphaherpesvirus induces MHC-I downregulation through endocytosis, which is mediated by pUL56. The dynamin-dependent endocytic pathway is responsible for MHC-I internalization in infected cells. Furthermore, we discovered that this endocytic process can be disrupted by the inhibiting ubiquitin-activating E1 enzyme, which is indispensable for ubiquitination. Finally, pUL56 action extends to a number of cell surface molecules that are significant for host immunity. Therefore, the protein may exert a more general immunomodulatory effect.


Assuntos
Dinaminas/metabolismo , Endocitose , Herpesvirus Equídeo 1/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Regulação para Baixo , Fibroblastos/imunologia , Fibroblastos/virologia , Cavalos , Humanos
6.
Eur J Pharm Biopharm ; 200: 114324, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759898

RESUMO

This study introduces two innovative nanocarrier systems to improve oral drug delivery. Desosomes and desimicelles combine Deep eutectic solvent (DES) with vesicular or micellar nanosystems, respectively. These novel nanosystems integrate the DES solubilization potency for administering drugs with low aqueous solubility and the vesicular and micellar systems to bypass physiological barriers and improve poor drug bioavailability. Lornoxicam (LRX) is a BCS class II anti-inflammatory with limited aqueous solubility and rapid clearance. Desosomes and desimicelles were prepared and successfully optimized. The optimization depended on particle size, zetapotential, entrapment efficiency, and solubility. The optimized desosomes (LRX-DES-V) and desimicelles (LRX-DES-M) were pictured by transmission electron microscope. Differential scanning calorimetry (DSC) and FTIR analysis indicated the successful inclusion of LRX inside each system. Invitro LRX release profiles revealed controlled release of LRX-DES-V and LRX-DES-M, with more sustained release by the later one. In-vivo study, inflammation was induced using a carrageenan rat model, and the anti-inflammatory effect of LRX-pure, marketed product, traditional niosomes, LRX-DES-V & LRX-DES-M were determined using inhibition %, serum inflammatory cytokines, and histopathology. After 4 h of induction, LRX-DES-M (68.05%) showed a significant inhibition compared to LRX-DES-V (63.57%). LRX-DES-M also showed a better reduction in COX2, PGE2, and TNF-α (1.25-fold, 1.24-fold, and 1.36-fold inhibition), respectively, compared to LRX-DES-V. We can conclude that LRX-DES-V and LRX-DES-M showed better effects than all other groups and that LRX-DES-M might be more effective than LRX-DES-V.


Assuntos
Micelas , Tamanho da Partícula , Piroxicam , Solubilidade , Animais , Ratos , Administração Oral , Piroxicam/administração & dosagem , Piroxicam/farmacocinética , Piroxicam/análogos & derivados , Piroxicam/química , Masculino , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Disponibilidade Biológica , Liberação Controlada de Fármacos , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Lipossomos , Ratos Wistar , Nanopartículas/química , Solventes/química , Carragenina , Varredura Diferencial de Calorimetria
7.
Cell Rep Med ; 5(5): 101520, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38642550

RESUMO

Pathogenic variants in MYH7 and MYBPC3 account for the majority of hypertrophic cardiomyopathy (HCM). Targeted drugs like myosin ATPase inhibitors have not been evaluated in children. We generate patient and variant-corrected iPSC-cardiomyocytes (CMs) from pediatric HCM patients harboring single variants in MYH7 (V606M; R453C), MYBPC3 (G148R) or digenic variants (MYBPC3 P955fs, TNNI3 A157V). We also generate CMs harboring MYBPC3 mono- and biallelic variants using CRISPR editing of a healthy control. Compared with isogenic and healthy controls, variant-positive CMs show sarcomere disorganization, higher contractility, calcium transients, and ATPase activity. However, only MYH7 and biallelic MYBPC3 variant-positive CMs show stronger myosin-actin binding. Targeted myosin ATPase inhibitors show complete rescue of the phenotype in variant-positive CMs and in cardiac Biowires to mirror isogenic controls. The response is superior to verapamil or metoprolol. Myosin inhibitors can be effective in genotypically diverse HCM highlighting the need for myosin inhibitor drug trials in pediatric HCM.


Assuntos
Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Cadeias Pesadas de Miosina , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Criança , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Genótipo , Miosinas/metabolismo , Miosinas/genética , Masculino , Feminino , Sarcômeros/metabolismo , Sarcômeros/genética
8.
Eur J Pharm Biopharm ; 196: 114205, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311187

RESUMO

The targeting and mucoadhesive features of chitosan (CS)-linked solid lipid nanoparticles (SLNs) were exploited to efficiently deliver fexofenadine (FEX) into the colon, forming a novel and potential oral therapeutic option for ulcerative colitis (UC) treatment. Different FEX-CS-SLNs with varied molecular weights of CS were prepared and optimized. Optimized FEX-CS-SLNs exhibited 229 ± 6.08 nm nanometric size, 36.3 ± 3.18 mV zeta potential, 64.9 % EE, and a controlled release profile. FTIR, DSC, and TEM confirmed good drug entrapment and spherical particles. Mucoadhesive properties of FEX-CS-SLNs were investigated through mucin incubation and exhibited considerable mucoadhesion. The protective effect of FEX-pure, FEX-market, and FEX-CS-SLNs against acetic acid-induced ulcerative colitis in rats was examined. Oral administration of FEX-CS-SLNs for 14 days before ulcerative colitis induction reversed UC symptoms and almost restored the intestinal mucosa to normal integrity and inhibited Phosphatidylinositol-3 kinase (73.6 %), protein kinase B (73.28 %), and elevated nuclear factor erythroid 2-related factor 2 (185.9 %) in colonic tissue. Additionally, FEX-CS-SLNs inhibited tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) to (70.79 % & 72.99 %) in colonic tissue. The ameliorative potential of FEX-CS-SLNs outperformed that of FEX-pure and FEX-market. The exceptional protective effect of FEX-CS-SLNs makes it a potentially effective oral system for managing ulcerative colitis.


Assuntos
Quitosana , Colite Ulcerativa , Lipossomos , Nanopartículas , Terfenadina/análogos & derivados , Ratos , Animais , Colite Ulcerativa/tratamento farmacológico , Portadores de Fármacos/efeitos adversos , Tamanho da Partícula
9.
J Virol ; 86(15): 8059-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22623773

RESUMO

Major histocompatibility complex class I (MHC-I) molecules are critically important in the host defense against various pathogens through presentation of viral peptides to cytotoxic T lymphocytes (CTLs), a process resulting in the destruction of virus-infected cells. Herpesviruses interfere with CTL-mediated elimination of infected cells by various mechanisms, including inhibition of peptide transport and loading, perturbation of MHC-I trafficking, and rerouting and proteolysis of cell surface MHC-I. In this study, we show that equine herpesvirus type 4 (EHV-4) modulates MHC-I cell surface expression through two different mechanisms. First, EHV-4 can lead to a significant downregulation of MHC-I expression at the cell surface through the product of ORF1, a protein expressed with early kinetics from a gene that is homologous to herpes simplex virus 1 UL56. The EHV-4 UL56 protein reduces cell surface MHC-I as early as 4 h after infection. Second, EHV-4 can interfere with MHC-I antigen presentation, starting at 6 h after infection, by inhibition of the transporter associated with antigen processing (TAP) through its UL49.5 protein. Although pUL49.5 has no immediate effect on overall surface MHC-I levels in infected cells, it blocks the supply of antigenic peptides to the endoplasmic reticulum (ER) and transport of peptide-loaded MHC-I to the cell surface. Taken together, our results show that EHV-4 encodes at least two viral immune evasion proteins: pUL56 reduces MHC-I molecules on the cell surface at early times after infection, and pUL49.5 interferes with MHC-I antigen presentation by blocking peptide transport in the ER.


Assuntos
Apresentação de Antígeno/imunologia , Regulação para Baixo/imunologia , Infecções por Herpesviridae/imunologia , Herpesvirus Equídeo 4/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Proteínas Estruturais Virais/imunologia , Animais , Apresentação de Antígeno/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Cães , Regulação para Baixo/genética , Células HEK293 , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , Herpesvirus Equídeo 4/genética , Herpesvirus Equídeo 4/metabolismo , Antígenos de Histocompatibilidade Classe I/biossíntese , Antígenos de Histocompatibilidade Classe I/genética , Cavalos , Humanos , Camundongos , Transporte Proteico/genética , Transporte Proteico/imunologia , Células Vero , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo
11.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37351955

RESUMO

Mycoplasma hyopneumoniae causes enzootic pneumonia, a highly contagious respiratory disease in swine that causes significant economic losses worldwide. It is unknown whether the nucleotide oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome regulates the immune response in swine during M. hyopneumoniae infection. The current study utilized an in vivo swine model of M. hyopneumoniae infection to investigate the regulatory functional role of the NLRP3 inflammasome during M. hyopneumoniae infection. Notable histopathological alterations were observed in M. hyopneumoniae-infected swine tissues, which were associated with an inflammatory response and disease progression. Swine M. hyopneumoniae infection was associated with an increase in the expression of the NLRP3 inflammasome, which stimulated pro-inflammatory cytokines such as tumor necrosis factor-alpha, interleukin 18, and interleukin 1 beta (IL-1ß). The impact of the NLRP3 inhibitor, MCC950 on NLRP3 and pro-inflammatory cytokines in M. hyopneumoniae-infected swine was examined to investigate the relationship between the NLRP3 inflammasome and M. hyopneumoniae infection. Taken together, our findings provide strong evidence that the NLRP3 inflammasome plays a critical regulatory functional role in M. hyopneumoniae infection in swine.


Our study highlights the importance of controlling the innate immune defense against respiratory mycoplasma invasion to suppress mycoplasma growth and minimize lung tissue damage. Using an in vivo swine model, we investigated the regulatory functional role of the NLR family pyrin domain containing 3 (NLRP3) inflammasome during acute Mycoplasma hyopneumoniae infection. Furthermore, we also found that NLRP3 expression levels have the potential to serve as a novel diagnostic marker for detecting M. hyopneumoniae infection in the respiratory tract of pigs. The NLRP3 inhibitor, MCC950, was used to investigate how NLRP3 inhibition affects the expression of inflammatory cytokines, and it was found that the NLRP3 inhibitor significantly reduced the mRNA and protein expression of NLRP3, indicating its specific targeting of the NLRP3 inflammasome during M. hyopneumoniae infection in swine. The findings suggest that MCC950 is a promising therapeutic option for treating NLRP3-related disorders, including porcine enzootic pneumonia.


Assuntos
Infecções por Mycoplasma , Mycoplasma hyopneumoniae , Doenças dos Suínos , Animais , Suínos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Infecções por Mycoplasma/veterinária , Citocinas , Interleucina-1beta/metabolismo
12.
Cell Genom ; 3(7): 100330, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37492106

RESUMO

High blood pressure (BP) is the major risk factor for cardiovascular disease. Genome-wide association studies have identified genetic variants for BP, but functional insights into causality and related molecular mechanisms lag behind. We functionally characterize 4,608 genetic variants in linkage with 135 BP loci in vascular smooth muscle cells and cardiomyocytes by massively parallel reporter assays. High densities of regulatory variants at BP loci (i.e., ULK4, MAP4, CFDP1, PDE5A) indicate that multiple variants drive genetic association. Regulatory variants are enriched in repeats, alter cardiovascular-related transcription factor motifs, and spatially converge with genes controlling specific cardiovascular pathways. Using heuristic scoring, we define likely causal variants, and CRISPR prime editing finally determines causal variants for KCNK9, SFXN2, and PCGF6, which are candidates for developing high BP. Our systems-level approach provides a catalog of functionally relevant variants and their genomic architecture in two trait-relevant cell lines for a better understanding of BP gene regulation.

13.
NPJ Genom Med ; 7(1): 18, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288587

RESUMO

Cardiomyopathy (CMP) is a heritable disorder. Over 50% of cases are gene-elusive on clinical gene panel testing. The contribution of variants in non-coding DNA elements that result in cryptic splicing and regulate gene expression has not been explored. We analyzed whole-genome sequencing (WGS) data in a discovery cohort of 209 pediatric CMP patients and 1953 independent replication genomes and exomes. We searched for protein-coding variants, and non-coding variants predicted to affect the function or expression of genes. Thirty-nine percent of cases harbored pathogenic coding variants in known CMP genes, and 5% harbored high-risk loss-of-function (LoF) variants in additional candidate CMP genes. Fifteen percent harbored high-risk regulatory variants in promoters and enhancers of CMP genes (odds ratio 2.25, p = 6.70 × 10-7 versus controls). Genes involved in α-dystroglycan glycosylation (FKTN, DTNA) and desmosomal signaling (DSC2, DSG2) were most highly enriched for regulatory variants (odds ratio 6.7-58.1). Functional effects were confirmed in patient myocardium and reporter assays in human cardiomyocytes, and in zebrafish CRISPR knockouts. We provide strong evidence for the genomic contribution of functionally active variants in new genes and in regulatory elements of known CMP genes to early onset CMP.

14.
Virology ; 546: 25-37, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452415

RESUMO

Bovine adenovirus-3 (BAdV-3) is a non enveloped, icosahedral DNA virus containing a genome of 34446 bps. The intermediate region of BAdV-3 encodes pIX and IVa2 proteins. Here, we report the characterization of BAdV-3 IVa2. Anti-IVa2 serum detected a 50 kDa protein at 24-48 h post infection in BAdV-3 infected cells. The IVa2 localizes to nucleus and nucleolus of BAdV-3 infected cells. Analysis of mutant IVa2 demonstrated that amino acids 1-25 and 373-448 are required for nuclear and nucleolar localization of IVa2, respectively. The nuclear import of IVa2 utilize importin α -1 of importin nuclear import pathway. Although deletion/substitution of amino acids 4-18 is sufficient to abrogate the nuclear localization of IVa2, amino acids 1-25 are required for nuclear localization of a cytoplasmic protein. Furthermore, we demonstrate that amino acids 1-25 and 120-140 of IVa2 interact with importin α-1 and pV proteins, respectively in BAdV-3 infected cells.


Assuntos
Infecções por Adenoviridae/veterinária , Doenças dos Bovinos/virologia , Nucléolo Celular/virologia , Mastadenovirus/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Infecções por Adenoviridae/genética , Infecções por Adenoviridae/metabolismo , Infecções por Adenoviridae/virologia , Motivos de Aminoácidos , Animais , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Genoma Viral , Carioferinas/genética , Carioferinas/metabolismo , Mastadenovirus/química , Mastadenovirus/genética , Ligação Proteica , Transporte Proteico , Proteínas Virais/genética
15.
Virology ; 522: 209-219, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30053654

RESUMO

The L6 region of bovine adenovirus-3 (BAdV-3) encodes unspliced and spliced proteins named 22K and 33K, respectively. Earlier, anti-22K sera detected two proteins of 42- and 37-kDa in infected cells and 42-kDa protein in transfected cells. Here, we demonstrate that 22K protein localizes to the nucleus of BAdV-3 infected or transfected cells. Analysis of mutant 22K proteins suggested that amino acids 231-250 of non-conserved C-terminus of 22K are required for nuclear localization. The nuclear import of 22K appears to utilize multiple importin (α-5 and α-7) of importin α/ß nuclear import pathway. Mutational analysis of 22K identified four basic residues 238RRRK241, which apparently are essential for the nuclear localization of 22K. Our results suggest that the nuclear localization of 22K appear essential for virus replication and production of progeny BAdV-3. Furthermore, we demonstrate that N-terminus amino acid 35-65 conserved in 22K and 33K interact with 52K protein in BAdV-3 infected cells.


Assuntos
Interações Hospedeiro-Patógeno , Carioferinas/metabolismo , Mastadenovirus/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Análise Mutacional de DNA , Humanos , Proteínas Virais/genética
16.
Cytotechnology ; 70(1): 67-82, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28918563

RESUMO

This study aimed to develop a bovine mammary epithelial (BME) cell line model, which provides a possibility to determine functional properties of the bovine mammary gland. The primary cell culture was derived from bovine mammary gland tissues and processed enzymatically to obtain cell colonies with epithelial-like morphology. The cultures of BME cells were purified and optimally cultured at 37 °C in DMEM/F12 medium supplemented with 10% fetal bovine serum. The BME cells were identified as epithelial cell line by the evaluating the expression of keratin-18 using immunofluorescence staining. A novel gene expression system strongly enhances the expression of telomerase, has been used to immortalize BME cell line termed hTBME cell line. Interestingly, telomerase remained active even after over 60 passages of hTBME cell line, required for immortalization of BME cells. In addition, the hTBME cell line was continuously subcultured with a spontaneous epithelial-like morphology, with a great proliferation activity, and without evidence of apoptotic and necrotic effects. Further characterization showed that hTBME cell line can be continuously propagated in culture with constant chromosomal features and without tumorigenic properties. Finally, established hTBME cell line was evaluated for mammary gland specific functions. Our results demonstrated that the hTBME cell line was able to retain functional-morphological structure, and functional differentiation by expression of beta (ß)-casein as in the bovine mammary gland in vivo. Taken together, our findings suggest that the established hTBME cell line can serve as a valuable tool for the study of bovine mammary gland functions.

17.
PLoS One ; 13(3): e0193876, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29494688

RESUMO

In this study, we report the establishment and characterization of a new epithelial cell line, goose embryonated epithelial cell line (GEE), derived from embryonic goose tissue. The purified GEE cell line can efficiently grow over 65 passages in the M199 medium supplemented with 10% fetal bovine serum at 37°C. Immunofluorescence assay was used to identify purified GEE cells as epithelial cell line by detecting expression of the Keratin-18 and -19. Further characterizations demonstrated that the GEE cell line can be continuously subcultured with (i) a high capacity to replicate for over 65 passages, (ii) a spontaneous epithelial-like morphology, (iii) constant chromosomal features and (iv) without an evidence of converting to tumorigenic cells either in vitro or in vivo study. Moreover, the GEE cell line can be effectively transfected with plasmids expressing reporter genes of different avian viruses, such as VP3, VP1 and F of goose parvo virus (GPV), duck hepatitis virus (DHV), and Newcastle disease virus (NDV), respectively. Finally, the established GEE cell line was evaluated for avian viruses infection susceptibility. Our results showed that the tested GPV, DHAV and NDV were capable to replicate in the new cell line with titers a comparatively higher to the ones detected in the traditional culture system. Accordingly, our established GEE cell line is apparently a suitable in vitro model for transgenic, and infection manipulation studies.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/virologia , Gansos/virologia , Vírus da Hepatite do Pato/patogenicidade , Vírus da Doença de Newcastle/patogenicidade , Animais , Doenças das Aves/virologia , Linhagem Celular , Transfecção/métodos , Viroses/virologia
18.
Virus Res ; 213: 260-268, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26739426

RESUMO

The primary cell culture was derived from duck embryonic tissue, digested with collagenase type I. The existence of cell colonies with epithelial-like morphology, named duck embryo epithelial (DEE), were purified and optimally maintained at 37°C in M199 medium supplemented with 5% fetal bovine serum. The purified cells were identified as epithelial cell line by detecting Keratin-18 expression using immunofluorescence assay. Our findings demonstrated that DEE cell line can be propagated in culture with (i) a great capacity to adhere, (ii) a great proliferation activity, and (iii) a population doubling time of approximately 18h. Chromosomal features of the DEE cell line were remained constant after the 50th passage. Further characterizations of DEE cell line showed that cell line can normally be grown even after several passages and never converted to tumorigenic cells either in vitro or in vivo study. Susceptibility of DEE cell line was determined for transfection and duck hepatitis A type 1 virus (DHAV-1)-infection. Interestingly, the 50% egg lethal dose (ELD50) of the propagated virus in DEE cell line was higher than ELD50 of the propagated virus in embryonated eggs. Finally, DEE cell line was evaluated to be used as a candidate for DHAV-1 vaccine development. Our results showed that the propagated DHAV-1 vaccine strain SDE in DEE cell line was able to protect ducklings against DHAV-1 challenge. Taken together, our findings suggest that the DEE cell line can serve as a valuable tool for DHAV-1 propagation and vaccine production.


Assuntos
Linhagem Celular , Patos , Vírus da Hepatite do Pato/crescimento & desenvolvimento , Vacinas contra Hepatite Viral/isolamento & purificação , Cultura de Vírus/métodos , Animais , Adesão Celular , Proliferação de Células , Meios de Cultura/química , Embrião não Mamífero , Células Epiteliais/fisiologia , Células Epiteliais/virologia , Instabilidade Genômica , Vírus da Hepatite do Pato/patogenicidade , Hepatite Viral Animal/prevenção & controle , Vacinas contra Hepatite Viral/imunologia
19.
Virology ; 449: 263-9, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24418561

RESUMO

Equine herpesvirus type 1 (EHV-1) ORF59 is predicted to encode a protein consisting of 180 amino acids. To determine whether ORF59 in fact encodes a protein, sequences encoding an HA epitope (YPYDVPDYA) was inserted at the carboxyterminus of the ORF59 protein in EHV-1 strain Ab4. Using anti-HA monoclonal antibodies, a 21-kDa band was specifically detected by western blot analysis in lysates of cells infected with a recombinant EHV-1 from strain Ab4 that carries the pORF59-HA but not in cells infected with parental Ab4. Further characterization of the protein using immunofluorescence and fractionation studies showed that pORF59 is an early protein that localizes to the cytosol in virus-infected cells. Recombinant EHV-1 lacking ORF59 (rAb4∆59) exhibited a small-plaque phenotype and could not be propagated. Our findings suggest that the ORF59 protein plays a major role in EHV-1 replication in vitro and likely in vivo.


Assuntos
Citosol/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Equídeo 1/crescimento & desenvolvimento , Herpesvirus Equídeo 1/metabolismo , Doenças dos Cavalos/virologia , Fases de Leitura Aberta , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Infecções por Herpesviridae/virologia , Herpesvirus Equídeo 1/genética , Cavalos , Dados de Sequência Molecular , Transporte Proteico , Proteínas Virais/genética
20.
Virology ; 460-461: 11-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25010266

RESUMO

The equine herpesvirus type 1 (EHV-1) open reading frame 34 (ORF34) is predicted to encode a polypeptide of 161 amino acids. We show that an ORF34 deletion mutant exhibited a significant growth defect in equine peripheral blood mononuclear cells taken directly ex vivo during early but not late times of infection. ORF34 protein (pORF34)-specific antibodies specifically reacted with a 28-kDa early polypeptide present in the cytosol of infected cells. From 10h post infection, multiple smaller pORF34-specific protein moieties were detected indicating that expression of a late viral gene product(s) caused pORF34 degradation. Proteasome inhibitors blocked pORF34 degradation as did treatment of infected cells with a ubiquitin-activating enzyme (E1) inhibitor. Finally, kinetic studies showed that pORF34 is modified by addition of multiple copies of ubiquitin. Taken together, our findings suggest that the ubiquitin proteasome pathway is required for pORF34 degradation that may modulate protein activity in the course of infection.


Assuntos
Infecções por Herpesviridae/veterinária , Herpesvirus Equídeo 1/crescimento & desenvolvimento , Herpesvirus Equídeo 1/metabolismo , Doenças dos Cavalos/virologia , Fases de Leitura Aberta , Proteínas Virais/metabolismo , Animais , Infecções por Herpesviridae/virologia , Herpesvirus Equídeo 1/química , Herpesvirus Equídeo 1/genética , Cavalos , Cinética , Proteólise , Ubiquitinação , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA