Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(8): 3021-3033, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38602390

RESUMO

Synthesis planning of new pharmaceutical compounds is a well-known bottleneck in modern drug design. Template-free methods, such as transformers, have recently been proposed as an alternative to template-based methods for single-step retrosynthetic predictions. Here, we trained and evaluated a transformer model, called the Chemformer, for retrosynthesis predictions within drug discovery. The proprietary data set used for training comprised ∼18 M reactions from literature, patents, and electronic lab notebooks. Chemformer was evaluated for the purpose of both single-step and multistep retrosynthesis. We found that the single-step performance of Chemformer was especially good on reaction classes common in drug discovery, with most reaction classes showing a top-10 round-trip accuracy above 0.97. Moreover, Chemformer reached a higher round-trip accuracy compared to that of a template-based model. By analyzing multistep retrosynthesis experiments, we observed that Chemformer found synthetic routes, leading to commercial starting materials for 95% of the target compounds, an increase of more than 20% compared to the template-based model on a proprietary compound data set. In addition to this, we discovered that Chemformer suggested novel disconnections corresponding to reaction templates, which are not included in the template-based model. These findings were further supported by a publicly available ChEMBL compound data set. The conclusions drawn from this work allow for the design of a synthesis planning tool where template-based and template-free models work in harmony to optimize retrosynthetic recommendations.


Assuntos
Descoberta de Drogas , Descoberta de Drogas/métodos , Compostos Orgânicos/química , Compostos Orgânicos/síntese química , Modelos Químicos
2.
J Cheminform ; 16(1): 57, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38778382

RESUMO

We present an updated overview of the AiZynthFinder package for retrosynthesis planning. Since the first version was released in 2020, we have added a substantial number of new features based on user feedback. Feature enhancements include policies for filter reactions, support for any one-step retrosynthesis model, a scoring framework and several additional search algorithms. To exemplify the typical use-cases of the software and highlight some learnings, we perform a large-scale analysis on several hundred thousand target molecules from diverse sources. This analysis looks at for instance route shape, stock usage and exploitation of reaction space, and points out strengths and weaknesses of our retrosynthesis approach. The software is released as open-source for educational purposes as well as to provide a reference implementation of the core algorithms for synthesis prediction. We hope that releasing the software as open-source will further facilitate innovation in developing novel methods for synthetic route prediction. AiZynthFinder is a fast, robust and extensible open-source software and can be downloaded from https://github.com/MolecularAI/aizynthfinder .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA