Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Metab Eng ; 77: 143-151, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990382

RESUMO

The end-to-end fusion of enzymes that catalyse successive steps in a reaction pathway is a metabolic engineering strategy that has been successfully applied in a variety of pathways and is particularly common in terpene bioproduction. Despite its popularity, limited work has been done to interrogate the mechanism of metabolic enhancement from enzyme fusion. We observed a remarkable >110-fold improvement in nerolidol production upon translational fusion of nerolidol synthase (a sesquiterpene synthase) to farnesyl diphosphate synthase. This delivered a titre increase from 29.6 mg/L up to 4.2 g/L nerolidol in a single engineering step. Whole-cell proteomic analysis revealed that nerolidol synthase levels in the fusion strains were greatly elevated compared to the non-fusion control. Similarly, the fusion of nerolidol synthase to non-catalytic domains also produced comparable increases in titre, which coincided with improved enzyme expression. When farnesyl diphosphate synthase was fused to other terpene synthases, we observed more modest improvements in terpene titre (1.9- and 3.8-fold), corresponding with increases of a similar magnitude in terpene synthase levels. Our data demonstrate that increased in vivo enzyme levels - resulting from improved expression and/or improved protein stability - is a major driver of catalytic enhancement from enzyme fusion.


Assuntos
Alquil e Aril Transferases , Sesquiterpenos , Geraniltranstransferase/genética , Proteômica , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/genética , Terpenos
2.
J Proteome Res ; 19(1): 106-118, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31789035

RESUMO

Partial neutralization of the Golgi lumen pH by the ectopic expression of influenza virus M2 proton channel is useful to stabilize acid-labile recombinant proteins in plant cells, but the impact of pH gradient mitigation on host cellular functions has not been investigated. Here, we assessed the unintended effects of M2 expression on the leaf proteome of Nicotiana benthamiana infiltrated with the bacterial gene vector Agrobacterium tumefaciens. An isobaric tags for relative and absolute quantification quantitative proteomics procedure was followed to compare the leaf proteomes of plants agroinfiltrated with either an "empty" vector or an M2-encoding vector. Leaves infiltrated with the empty vector had a low soluble protein content compared to noninfiltrated control leaves, associated with increased levels of stress-related proteins but decreased levels of photosynthesis-associated proteins. M2 expression partly compromised these effects of agroinfiltration to restore soluble protein content in the leaf tissue, associated with restored levels of photosynthesis-associated proteins and reduced levels of stress-related proteins in the apoplast. These data illustrate the cell-wide influence of the Golgi lumen pH homeostasis on the leaf proteome of N. benthamiana responding to microbial challenge. They also underline the relevance of assessing the eventual unintended effects of accessory proteins used to modulate specific cellular or metabolic functions in plant protein biofactories.


Assuntos
Nicotiana , Via Secretória , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Força Próton-Motriz , Nicotiana/genética , Nicotiana/metabolismo
4.
Langmuir ; 35(42): 13588-13594, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31557042

RESUMO

Biosurfactants are surface active molecules that can be produced by renewable, industrially scalable biologic processes. DAMP4, a designer biosurfactant, enables the modification of interfaces via genetic or chemical fusion to functional moieties. However, bioconjugation of addressable amines introduces heterogeneity that limits the precision of functionalization as well as the resolution of interfacial characterization. Here, we designed DAMP4 variants with cysteine point mutations to allow for site-specific bioconjugation. The DAMP4 variants were shown to retain the structural stability and interfacial activity characteristic of the parent molecule, while permitting efficient and specific conjugation of polyethylene glycol (PEG). PEGylation results in a considerable reduction on the interfacial activity of both single and double mutants. Comparison of conjugates with one or two conjugation sites shows that both the number of conjugates as well as the mass of conjugated material impact the interfacial activity of DAMP4. As a result, the ability of DAMP4 variants with multiple PEG conjugates to impart colloidal stability on peptide-stabilized emulsions is reduced. We suggest that this is due to steric constraints on the structures of amphiphilic helices at the interface. Specific and efficient bioconjugation permits the exploration and investigation of the interfacial properties of designer protein biosurfactants with molecular precision. Our findings should therefore inform the design and modification of biosurfactants for their increasing use in industrial processes and nutritional and pharmaceutical formulations.


Assuntos
Peptídeos/química , Polietilenoglicóis/química , Tensoativos/química , Estrutura Secundária de Proteína , Proteínas Recombinantes/química
5.
Plant Biotechnol J ; 16(11): 1928-1938, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29618167

RESUMO

Cellular engineering approaches have been proposed to mitigate unintended proteolysis in plant protein biofactories, involving the design of protease activity-depleted environments by gene silencing or in situ inactivation with accessory protease inhibitors. Here, we assessed the impact of influenza virus M2 proton channel on host protease activities and recombinant protein processing in the cell secretory pathway of Nicotiana benthamiana leaves. Transient co-expression assays with M2 and GFP variant pHluorin were first conducted to illustrate the potential of proton export from the Golgi lumen to promote recombinant protein yield. A fusion protein-based system involving protease-sensitive peptide linkers to attach inactive variants of tomato cystatin SlCYS8 was then designed to relate the effects of M2 on protein levels with altered protease activities in situ. Secreted versions of the cystatin fusions transiently expressed in leaf tissue showed variable 'fusion to free cystatin' cleavage ratios, in line with the occurrence of protease forms differentially active against the peptide linkers in the secretory pathway. Variable ratios were also observed for the fusions co-expressed with M2, but the extent of fusion cleavage was changed for several fusions, positively or negatively, as a result of pH increase in the Golgi. These data indicating a remodelling of endogenous protease activities upon M2 expression confirm that the stability of recombinant proteins in the plant cell secretory pathway is pH-dependent. They suggest, in practice, the potential of M2 proton channel to modulate the stability of protease-susceptible secreted proteins in planta via a pH-related, indirect effect on host resident proteases.


Assuntos
Nicotiana/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteólise , Via Secretória , Proteínas da Matriz Viral/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Recombinantes
6.
Appl Microbiol Biotechnol ; 102(20): 8763-8772, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30120526

RESUMO

In recent years, antimicrobial peptides (AMPs) have attracted increasing attention. The microbial cells provide a simple, cost-effective platform to produce AMPs in industrial quantities. While AMP production as fusion proteins in microorganisms is commonly used, the recovery of AMPs necessitates the use of expensive proteases and extra purification steps. Here, we develop a novel fusion protein DAMP4-F-pexiganan comprising a carrier protein DAMP4 linked to the AMP, pexiganan, through a long, flexible linker. We show that this fusion protein can be purified using a non-chromatography approach and exhibits the same antimicrobial activity as the chemically synthesized pexiganan peptide without any cleavage step. Activity of the fusion protein is dependent on a long, flexible linker between the AMP and carrier domains, as well as on the expression conditions of the fusion protein, with low-temperature expression promoting better folding of the AMP domain. The production of DAMP4-F-pexiganan circumvents the time-consuming and costly steps of chromatography-based purification and enzymatic cleavages, therefore shows considerable advantages over traditional microbial production of AMPs. We expect this novel fusion protein, and the studies on the effect of linker and expression conditions on its antimicrobial activity, will broaden the rational design and production of antimicrobial products based on AMPs.


Assuntos
Antibacterianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/biossíntese , Escherichia coli/metabolismo , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Expressão Gênica , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia
7.
Soft Matter ; 13(43): 7953-7961, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29038804

RESUMO

The interfacial properties of nanoscale materials have profound influence on biodistribution and stability as well as the effectiveness of sophisticated surface-encoded properties such as active targeting to cell surface receptors. Tailorable nanocarrier emulsions (TNEs) are a novel class of oil-in-water emulsions stabilised by molecularly-engineered biosurfactants that permit single-pot stepwise surface modification with related polypeptides that may be chemically conjugated or genetically fused to biofunctional moieties. We have probed the structure and function of poly(ethylene glycol) (PEG) used to decorate TNEs in this way. The molecular weight of PEG decorating TNEs has considerable impact on the ζ-potential of the emulsion particles, related to differential interfacial thickness of the PEG layer as determined by X-ray reflectometry. By co-modifying TNEs with an antibody fragment, we show that the molecular weight and density of PEG governs the competing parameters of accessibility of the targeting moiety and of shielding the interface from non-specific interactions with the environment. The fundamental understanding of the molecular details of the PEG layer that we present provides valuable insights into the structure-function relationship for soft nanomaterial interfaces. This work therefore paves the way for further rational design of TNEs and other nanocarriers that must interact with their environment in controlled and predictable ways.

8.
Proc Natl Acad Sci U S A ; 110(35): E3360-7, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940321

RESUMO

Members of the cytochromes P450 superfamily (P450s) catalyze a huge variety of oxidation reactions in microbes and higher organisms. Most P450 families are highly divergent, but in contrast the cytochrome P450 14α-sterol demethylase (CYP51) family is one of the most ancient and conserved, catalyzing sterol 14α-demethylase reactions required for essential sterol synthesis across the fungal, animal, and plant kingdoms. Oats (Avena spp.) produce antimicrobial compounds, avenacins, that provide protection against disease. Avenacins are synthesized from the simple triterpene, ß-amyrin. Previously we identified a gene encoding a member of the CYP51 family of cytochromes P450, AsCyp51H10 (also known as Saponin-deficient 2, Sad2), that is required for avenacin synthesis in a forward screen for avenacin-deficient oat mutants. sad2 mutants accumulate ß-amyrin, suggesting that they are blocked early in the pathway. Here, using a transient plant expression system, we show that AsCYP51H10 is a multifunctional P450 capable of modifying both the C and D rings of the pentacyclic triterpene scaffold to give 12,13ß-epoxy-3ß,16ß-dihydroxy-oleanane (12,13ß-epoxy-16ß-hydroxy-ß-amyrin). Molecular modeling and docking experiments indicate that C16 hydroxylation is likely to precede C12,13 epoxidation. Our computational modeling, in combination with analysis of a suite of sad2 mutants, provides insights into the unusual catalytic behavior of AsCYP51H10 and its active site mutants. Fungal bioassays show that the C12,13 epoxy group is an important determinant of antifungal activity. Accordingly, the oat AsCYP51H10 enzyme has been recruited from primary metabolism and has acquired a different function compared to other characterized members of the plant CYP51 family--as a multifunctional stereo- and regio-specific hydroxylase in plant specialized metabolism.


Assuntos
Anti-Infecciosos/metabolismo , Avena/metabolismo , Esterol 14-Desmetilase/metabolismo , Triterpenos/metabolismo , Sequência de Aminoácidos , Transferases Intramoleculares/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Homologia de Sequência de Aminoácidos , Esterol 14-Desmetilase/química , Esterol 14-Desmetilase/genética , Nicotiana/enzimologia
9.
Plant Biotechnol J ; 13(8): 1169-79, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26286859

RESUMO

A key factor influencing the yield of biopharmaceuticals in plants is the ratio of recombinant to host proteins in crude extracts. Postextraction procedures have been devised to enrich recombinant proteins before purification. Here, we assessed the potential of methyl jasmonate (MeJA) as a generic trigger of recombinant protein enrichment in Nicotiana benthamiana leaves before harvesting. Previous studies have reported a significant rebalancing of the leaf proteome via the jasmonate signalling pathway, associated with ribulose 1,5-bisphosphate carboxylase oxygenase (RuBisCO) depletion and the up-regulation of stress-related proteins. As expected, leaf proteome alterations were observed 7 days post-MeJA treatment, associated with lowered RuBisCO pools and the induction of stress-inducible proteins such as protease inhibitors, thionins and chitinases. Leaf infiltration with the Agrobacterium tumefaciens bacterial vector 24 h post-MeJA treatment induced a strong accumulation of pathogenesis-related proteins after 6 days, along with a near-complete reversal of MeJA-mediated stress protein up-regulation. RuBisCO pools were partly restored upon infiltration, but most of the depletion effect observed in noninfiltrated plants was maintained over six more days, to give crude protein samples with 50% less RuBisCO than untreated tissue. These changes were associated with net levels reaching 425 µg/g leaf tissue for the blood-typing monoclonal antibody C5-1 expressed in MeJA-treated leaves, compared to less than 200 µg/g in untreated leaves. Our data confirm overall the ability of MeJA to trigger RuBisCO depletion and recombinant protein enrichment in N. benthamiana leaves, estimated here for C5-1 at more than 2-fold relative to host proteins.


Assuntos
Nicotiana/genética , Folhas de Planta/metabolismo , Proteoma/metabolismo , Proteínas Recombinantes/biossíntese , Acetatos/farmacologia , Agrobacterium tumefaciens/efeitos dos fármacos , Anticorpos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Peptídeo Hidrolases/metabolismo , Folhas de Planta/efeitos dos fármacos , Plantas Geneticamente Modificadas , Nicotiana/efeitos dos fármacos , Transfecção , Regulação para Cima/efeitos dos fármacos
10.
Biotechnol Bioeng ; 111(3): 425-40, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24347238

RESUMO

Virus-like particle (VLP) technology seeks to harness the optimally tuned immunostimulatory properties of natural viruses while omitting the infectious trait. VLPs that assemble from a single protein have been shown to be safe and highly efficacious in humans, and highly profitable. VLPs emerging from basic research possess varying levels of complexity and comprise single or multiple proteins, with or without a lipid membrane. Complex VLP assembly is traditionally orchestrated within cells using black-box approaches, which are appropriate when knowledge and control over assembly are limited. Recovery challenges including those of adherent and intracellular contaminants must then be addressed. Recent commercial VLPs variously incorporate steps that include VLP in vitro assembly to address these problems robustly, but at the expense of process complexity. Increasing research activity and translation opportunity necessitate bioengineering advances and new bioprocessing modalities for efficient and cost-effective production of VLPs. Emerging approaches are necessarily multi-scale and multi-disciplinary, encompassing diverse fields from computational design of molecules to new macro-scale purification materials. In this review, we highlight historical and emerging VLP vaccine approaches. We overview approaches that seek to specifically engineer a desirable immune response through modular VLP design, and those that seek to improve bioprocess efficiency through inhibition of intracellular assembly to allow optimal use of existing purification technologies prior to cell-free VLP assembly. Greater understanding of VLP assembly and increased interdisciplinary activity will see enormous progress in VLP technology over the coming decade, driven by clear translational opportunity.


Assuntos
Bioengenharia/métodos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , História do Século XX , História do Século XXI , Vacinas de Partículas Semelhantes a Vírus/história
11.
Methods Enzymol ; 699: 121-161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38942501

RESUMO

The step catalyzed by terpene synthases is a well-recognized and significant bottleneck in engineered terpenoid bioproduction. Consequently, substantial efforts have been devoted towards increasing metabolic flux catalyzed by terpene synthases, employing strategies such as gene overexpression and protein engineering. Notably, numerous studies have demonstrated remarkable titer improvements by applying translational fusion, typically by fusing the terpene synthase with a prenyl diphosphate synthase that catalyzes the preceding step in the pathway. The main appeal of the translational fusion approach lies in its simplicity and orthogonality to other metabolic engineering tools. However, there is currently limited understanding of the underlying mechanism of flux enhancement, owing to the unpredictable and often protein-specific effects of translational fusion. In this chapter, we discuss practical considerations when engineering translationally fused terpene synthases, drawing insights from our experience and existing literature. We also provide detailed experimental workflows and protocols based on our previous work in budding yeast (Saccharomyces cerevisiae). Our intention is to encourage further research into the translational fusion of terpene synthases, anticipating that this will contribute mechanistic insights not only into the activity, behavior, and regulation of terpene synthases, but also of other enzymes.


Assuntos
Alquil e Aril Transferases , Engenharia Metabólica , Saccharomyces cerevisiae , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Terpenos/metabolismo , Biossíntese de Proteínas , Engenharia de Proteínas/métodos
12.
Theranostics ; 14(8): 3043-3079, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855174

RESUMO

In 1853, the perception of prostate cancer (PCa) as a rare ailment prevailed, was described by the eminent Londoner surgeon John Adams. Rapidly forward to 2018, the landscape dramatically altered. Currently, men face a one-in-nine lifetime risk of PCa, accentuated by improved diagnostic methods and an ageing population. With more than three million men in the United States alone grappling with this disease, the overall risk of succumbing to stands at one in 39. The intricate clinical and biological diversity of PCa poses serious challenges in terms of imaging, ongoing monitoring, and disease management. In the field of theranostics, diagnostic and therapeutic approaches that harmoniously merge targeted imaging with treatments are integrated. A pivotal player in this arena is radiotheranostics, employing radionuclides for both imaging and therapy, with prostate-specific membrane antigen (PSMA) at the forefront. Clinical milestones have been reached, including FDA- and/or EMA-approved PSMA-targeted radiodiagnostic agents, such as [18F]DCFPyL (PYLARIFY®, Lantheus Holdings), [18F]rhPSMA-7.3 (POSLUMA®, Blue Earth Diagnostics) and [68Ga]Ga-PSMA-11 (Locametz®, Novartis/ ILLUCCIX®, Telix Pharmaceuticals), as well as PSMA-targeted radiotherapeutic agents, such as [177Lu]Lu-PSMA-617 (Pluvicto®, Novartis). Concurrently, ligand-drug and immune therapies designed to target PSMA are being advanced through rigorous preclinical research and clinical trials. This review delves into the annals of PSMA-targeted radiotheranostics, exploring its historical evolution as a signature molecule in PCa management. We scrutinise its clinical ramifications, acknowledge its limitations, and peer into the avenues that need further exploration. In the crucible of scientific inquiry, we aim to illuminate the path toward a future where the enigma of PCa is deciphered and where its menace is met with precise and effective countermeasures. In the following sections, we discuss the intriguing terrain of PCa radiotheranostics through the lens of PSMA, with the fervent hope of advancing our understanding and enhancing clinical practice.


Assuntos
Antígenos de Superfície , Glutamato Carboxipeptidase II , Neoplasias da Próstata , Compostos Radiofarmacêuticos , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/terapia , Glutamato Carboxipeptidase II/metabolismo , Masculino , Antígenos de Superfície/metabolismo , Compostos Radiofarmacêuticos/uso terapêutico , Medicina Nuclear/métodos , Medicina Nuclear/história , Nanomedicina Teranóstica/métodos , Radioisótopos/uso terapêutico , História do Século XXI , História do Século XX
13.
Acta Crystallogr D Struct Biol ; 80(Pt 3): 203-215, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411551

RESUMO

Mevalonate kinase is central to the isoprenoid biosynthesis pathway. Here, high-resolution X-ray crystal structures of two mevalonate kinases are presented: a eukaryotic protein from Ramazzottius varieornatus and an archaeal protein from Methanococcoides burtonii. Both enzymes possess the highly conserved motifs of the GHMP enzyme superfamily, with notable differences between the two enzymes in the N-terminal part of the structures. Biochemical characterization of the two enzymes revealed major differences in their sensitivity to geranyl pyrophosphate and farnesyl pyrophosphate, and in their thermal stabilities. This work adds to the understanding of the structural basis of enzyme inhibition and thermostability in mevalonate kinases.


Assuntos
Archaea , Ácido Mevalônico , Ácido Mevalônico/metabolismo , Archaea/metabolismo , Methanosarcinaceae/química , Methanosarcinaceae/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química
14.
Plant Biotechnol J ; 11(9): 1058-68, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23911079

RESUMO

Studies have reported the usefulness of fusion proteins to bolster recombinant protein yields in plants. Here, we assess the potential of tomato SlCYS8, a Cys protease inhibitor of the cystatin protein superfamily, as a stabilizing fusion partner for human alpha-1-antichymotrypsin (α1ACT) targeted to the plant cell secretory pathway. Using the model expression platform Nicotiana benthamiana, we show that the cystatin imparts a strong stabilizing effect when expressed as a translational fusion with α1ACT, allowing impressive accumulation yields of over 2 mg/g of fresh weight tissue for the human serpin, a 25-fold improvement on the yield of α1ACT expressed alone. Natural and synthetic peptide linkers inserted between SlCYS8 and α1ACT have differential effects on protease inhibitory potency of the two protein partners in vitro. They also have a differential impact on the yield of α1ACT, dependent on the extent to which the hybrid protein may remain intact in the plant cell environment. The stabilizing effect of SlCYS8 does not involve Cys protease inhibition and can be partly reproduced in the cytosol, where peptide linkers are less susceptible to degradation. The effect of SlCYS8 on α1ACT yields could be explained by: (i) an improved translation of the human protein coding sequence; and/or (ii) an overall stabilization of its tertiary structure preventing proteolytic degradation and/or polymerization. These findings suggest the potential of plant cystatins as stabilizing fusion partners for recombinant proteins in plant systems. They also underline the need for an empirical assessment of peptide linker functions in plant cell environments.


Assuntos
Cistatinas/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Serina Proteinase/metabolismo , Solanum lycopersicum/genética , alfa 1-Antiquimotripsina/metabolismo , Sequência de Aminoácidos , Cistatinas/genética , Inibidores de Cisteína Proteinase/genética , Humanos , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estabilidade Proteica , Proteínas Recombinantes de Fusão , Inibidores de Serina Proteinase/genética , Nicotiana/genética , Nicotiana/metabolismo , Transgenes , alfa 1-Antiquimotripsina/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-36345849

RESUMO

Viruses and the recombinant protein cages assembled from their structural proteins, known as virus-like particles (VLPs), have gained wide interest as tools in biotechnology and nanotechnology. Detailed structural information and their amenability to genetic and chemical modification make them attractive systems for further engineering. This review describes the range of non-enveloped viruses that have been co-opted for heterologous protein cargo encapsulation and the strategies that have been developed to drive encapsulation. Spherical capsids of a range of sizes have been used as platforms for protein cargo encapsulation. Various approaches, based on native and non-native interactions between the cargo proteins and inner surface of VLP capsids, have been devised to drive encapsulation. Here, we outline the evolution of these approaches, discussing their benefits and limitations. Like the viruses from which they are derived, VLPs are of interest in both biomedical and materials applications. The encapsulation of protein cargo inside VLPs leads to numerous uses in both fundamental and applied biocatalysis and biomedicine, some of which are discussed herein. The applied science of protein-encapsulating VLPs is emerging as a research field with great potential. Developments in loading control, higher order assembly, and capsid optimization are poised to realize this potential in the near future. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.


Assuntos
Proteínas do Capsídeo , Vírus , Proteínas do Capsídeo/análise , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Capsídeo/química , Vírus/genética , Proteínas Recombinantes , Biotecnologia
16.
Methods Mol Biol ; 2671: 387-402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37308657

RESUMO

Transient expression in plants has become a useful production system for virus-like particle (VLP) expression. High yields and flexible approaches to assembling complex VLPs, combine with ease of scale-up and inexpensive reagents to provide an attractive method for recombinant protein expression in general. Plants have demonstrated excellent capacity for the assembly and production of protein cages for use in vaccine design and nanotechnology. Furthermore, numerous virus structures have now been determined using plant-expressed VLPs, showing the utility of this approach in structural virology. Transient protein expression in plants uses common microbiology techniques, leading to a straightforward transformation procedure that does not result in stable transgenesis. In this chapter, we aim to provide a generic protocol for transient expression of VLPs in Nicotiana benthamiana using soil-free plant cultivation and a simple vacuum infiltration procedure, along with methodology for purifying VLPs from plant leaves.


Assuntos
Núcleo Celular , Nicotiana , Técnicas de Transferência de Genes , Nanotecnologia , Folhas de Planta
17.
ACS Appl Mater Interfaces ; 15(14): 17705-17715, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36995754

RESUMO

Virus-like particles (VLPs) derived from bacteriophage P22 have been explored as biomimetic catalytic compartments. In vivo colocalization of enzymes within P22 VLPs uses sequential fusion to the scaffold protein, resulting in equimolar concentrations of enzyme monomers. However, control over enzyme stoichiometry, which has been shown to influence pathway flux, is key to realizing the full potential of P22 VLPs as artificial metabolons. We present a tunable strategy for stoichiometric control over in vivo co-encapsulation of P22 cargo proteins, verified for fluorescent protein cargo by Förster resonance energy transfer. This was then applied to a two-enzyme reaction cascade. l-homoalanine, an unnatural amino acid and chiral precursor to several drugs, can be synthesized from the readily available l-threonine by the sequential activity of threonine dehydratase and glutamate dehydrogenase. We found that the loading density of both enzymes influences their activity, with higher activity found at lower loading density implying an impact of molecular crowding on enzyme activity. Conversely, increasing overall loading density by increasing the amount of threonine dehydratase can increase activity from the rate-limiting glutamate dehydrogenase. This work demonstrates the in vivo colocalization of multiple heterologous cargo proteins in a P22-based nanoreactor and shows that controlled stoichiometry of individual enzymes in an enzymatic cascade is required for the optimal design of nanoscale biocatalytic compartments.


Assuntos
Capsídeo , Treonina Desidratase , Capsídeo/química , Treonina Desidratase/análise , Glutamato Desidrogenase , Proteínas do Capsídeo/química , Nanotecnologia
18.
Adv Sci (Weinh) ; 10(32): e2303415, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37750486

RESUMO

Enzyme spatial organization is an evolved mechanism for facilitating multi-step biocatalysis and can play an important role in the regulation of promiscuous enzymes. The latter function suggests that artificial spatial organization can be an untapped avenue for controlling the specificity of bioengineered metabolic pathways. A promiscuous terpene synthase (nerolidol synthase) is co-localized and spatially organized with the preceding enzyme (farnesyl diphosphate synthase) in a heterologous production pathway, via translational protein fusion and/or co-encapsulation in a self-assembling protein cage. Spatial organization enhances nerolidol production by ≈11- to ≈62-fold relative to unorganized enzymes. More interestingly, striking differences in the ratio of end products (nerolidol and linalool) are observed with each spatial organization approach. This demonstrates that artificial spatial organization approaches can be harnessed to modulate the product profiles of promiscuous enzymes in engineered pathways in vivo. This extends the application of spatial organization beyond situations where multiple enzymes compete for a single substrate to cases where there is competition among multiple substrates for a single enzyme.


Assuntos
Sesquiterpenos , Sesquiterpenos/metabolismo , Redes e Vias Metabólicas
19.
Nat Nanotechnol ; 18(10): 1205-1212, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460794

RESUMO

Viral capsids can adopt various geometries, most iconically characterized by icosahedral or helical symmetries. Importantly, precise control over the size and shape of virus capsids would have advantages in the development of new vaccines and delivery systems. However, current tools to direct the assembly process in a programmable manner are exceedingly elusive. Here we introduce a modular approach by demonstrating DNA-origami-directed polymorphism of single-protein subunit capsids. We achieve control over the capsid shape, size and topology by employing user-defined DNA origami nanostructures as binding and assembly platforms, which are efficiently encapsulated within the capsid. Furthermore, the obtained viral capsid coatings can shield the encapsulated DNA origami from degradation. Our approach is, moreover, not limited to a single type of capsomers and can also be applied to RNA-DNA origami structures to pave way for next-generation cargo protection and targeting strategies.


Assuntos
Capsídeo , Nanoestruturas , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/análise , Proteínas do Capsídeo/química , Nanoestruturas/química , DNA/química , Vírion
20.
J Proteome Res ; 11(12): 5983-93, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23082957

RESUMO

Recent research has shown the possibility of tailoring the inhibitory specificity of plant cystatins toward cysteine (Cys) proteases by single mutations at positively selected amino acid sites. Here we devised a cystatin activity-based profiling approach to assess the impact of such mutations at the proteome scale using single variants of tomato cystatin SlCYS8 and digestive Cys proteases of the herbivorous insect, Colorado potato beetle, as a model. Biotinylated forms of SlCYS8 and SlCYS8 variants were used to capture susceptible Cys proteases in insect midgut protein extracts by biotin immobilization on avidin-embedded beads. A quantitative LC-MS/MS analysis of the captured proteins was performed to compare the inhibitory profile of different SlCYS8 variants. The approach confirmed the relevance of phylogenetic inferences categorizing the insect digestive Cys proteases into six functionally distinct families. It also revealed significant variation in protease family profiles captured with N-terminal variants of SlCYS8, in line with in silico structural models for Cys protease-SlCYS8 interactions suggesting a functional role for the N-terminal region. Our data confirm overall the usefulness of cystatin activity-based protease profiling for the monitoring of Cys protease-inhibitor interactions in complex biological systems. They also illustrate the potential of biotinylated cystatins to identify recombinant cystatin candidates for the inactivation of specific Cys protease targets.


Assuntos
Besouros/enzimologia , Cistatinas/metabolismo , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Animais , Cisteína Proteases/classificação , Ensaios Enzimáticos , Proteínas de Insetos/metabolismo , Larva/enzimologia , Modelos Biológicos , Simulação de Acoplamento Molecular , Complexos Multiproteicos/metabolismo , Mutação , Filogenia , Proteínas de Plantas/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , Proteoma/metabolismo , Proteômica/métodos , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA