Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38011118

RESUMO

Sensory stimulation triggers synchronized bioelectrical activity in the brain across various frequencies. This study delves into network-level activities, specifically focusing on local field potentials as a neural signature of visual category representation. Specifically, we studied the role of different local field potential frequency oscillation bands in visual stimulus category representation by presenting images of faces and objects to three monkeys while recording local field potential from inferior temporal cortex. We found category selective local field potential responses mainly for animate, but not inanimate, objects. Notably, face-selective local field potential responses were evident across all tested frequency bands, manifesting in both enhanced (above mean baseline activity) and suppressed (below mean baseline activity) local field potential powers. We observed four different local field potential response profiles based on frequency bands and face selective excitatory and suppressive responses. Low-frequency local field potential bands (1-30 Hz) were more prodominstaly suppressed by face stimulation than the high-frequency (30-170 Hz) local field potential bands. Furthermore, the low-frequency local field potentials conveyed less face category informtion than the high-frequency local field potential in both enhansive and suppressive conditions. Furthermore, we observed a negative correlation between face/object d-prime values in all the tested local field potential frequency bands and the anterior-posterior position of the recording sites. In addition, the power of low-frequency local field potential systematically declined across inferior temporal anterior-posterior positions, whereas high-frequency local field potential did not exhibit such a pattern. In general, for most of the above-mentioned findings somewhat similar results were observed for body, but not, other stimulus categories. The observed findings suggest that a balance of face selective excitation and inhibition across time and cortical space shape face category selectivity in inferior temporal cortex.


Assuntos
Encéfalo , Lobo Temporal , Lobo Temporal/fisiologia , Tronco , Estimulação Luminosa/métodos , Reconhecimento Visual de Modelos/fisiologia , Mapeamento Encefálico/métodos
2.
Comput Biol Med ; 164: 107159, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37531857

RESUMO

Brain Computer Interface (BCI) offers a promising approach to restoring hand functionality for people with cervical spinal cord injury (SCI). A reliable classification of brain activities based on appropriate flexibility in feature extraction could enhance BCI systems performance. In the present study, based on convolutional layers with temporal-spatial, Separable and Depthwise structures, we develop Temporal-Spatial Convolutional Residual Network)TSCR-Net(and Temporal-Spatial Convolutional Iterative Residual Network)TSCIR-Net(structures to classify electroencephalogram (EEG) signals. Using EEG signals in five different hand movement classes of SCI people, we compare the effectiveness of TSCIR-Net and TSCR-Net models with some competitive methods. We use the bayesian hyperparameter optimization algorithm to tune the hyperparameters of compact convolutional neural networks. In order to show the high generalizability of the proposed models, we compare the results of the models in different frequency ranges. Our proposed models decoded distinctive characteristics of different movement efforts and obtained higher classification accuracy than previous deep neural networks. Our findings indicate that TSCIR-Net and TSCR-Net models fulfills a better classification accuracy of 71.11%, and 64.55% for EEG_All and 57.74%, and 67.87% for EEG_Low frequency data sets than the compared methods in the literature.


Assuntos
Interfaces Cérebro-Computador , Humanos , Teorema de Bayes , Redes Neurais de Computação , Algoritmos , Movimento , Eletroencefalografia/métodos , Imaginação
3.
Sci Rep ; 9(1): 20186, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882838

RESUMO

Attention greatly influences sensory neural processing by enhancing firing rates of neurons that represent the attended stimuli and by modulating their tuning properties. The cholinergic system is believed to partly mediate the attention contingent improvement of cortical processing by influencing neuronal excitability, synaptic transmission and neural network characteristics. Here, we used a biophysically based model to investigate the mechanisms by which cholinergic system influences sensory information processing in the primary visual cortex (V1) layer 4C. The physiological properties and architectures of our model were inspired by experimental data and include feed-forward input from dorsal lateral geniculate nucleus that sets up orientation preference in V1 neural responses. When including a cholinergic drive, we found significant sharpening in orientation selectivity, desynchronization of LFP gamma power and spike-field coherence, decreased response variability and correlation reduction mostly by influencing intracortical interactions and by increasing inhibitory drive. Our results indicated that these effects emerged due to changes specific to the behavior of the inhibitory neurons. The behavior of our model closely resembles the effects of attention on neural activities in monkey V1. Our model suggests precise mechanisms through which cholinergic modulation may mediate the effects of attention in the visual cortex.


Assuntos
Acetilcolina/fisiologia , Atenção/fisiologia , Modelos Neurológicos , Córtex Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Rede Nervosa , Transmissão Sináptica
4.
PLoS One ; 6(10): e24386, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22046232

RESUMO

This paper illustrates the use of a combined neural network model based on Stacked Generalization method for classification of electrocardiogram (ECG) beats. In conventional Stacked Generalization method, the combiner learns to map the base classifiers' outputs to the target data. We claim adding the input pattern to the base classifiers' outputs helps the combiner to obtain knowledge about the input space and as the result, performs better on the same task. Experimental results support our claim that the additional knowledge according to the input space, improves the performance of the proposed method which is called Modified Stacked Generalization. In particular, for classification of 14966 ECG beats that were not previously seen during training phase, the Modified Stacked Generalization method reduced the error rate for 12.41% in comparison with the best of ten popular classifier fusion methods including Max, Min, Average, Product, Majority Voting, Borda Count, Decision Templates, Weighted Averaging based on Particle Swarm Optimization and Stacked Generalization.


Assuntos
Eletrocardiografia/métodos , Redes Neurais de Computação , Pulso Arterial/classificação , Eletrocardiografia/classificação , Eletrocardiografia/instrumentação , Eletrocardiografia/normas , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA