Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 379(2): 175-181, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34433578

RESUMO

Cefazolin is a first-line antibiotic to treat infection related to deployment-associated blast injuries. Prior literature demonstrated a 331% increase cefazolin liver area under the curve (AUC) in mice exposed to a survivable blast compared with controls. We repeated the experiment, validated the findings, and established a semimechanistic two-compartment pharmacokinetic (PK) model with effect compartments representing the liver and skin. We found that blast statistically significantly increased the pseudo-partition coefficient to the liver by 326% (95% confidence interval: 76-737%), which corresponds to the observed 331% increase in cefazolin liver AUC described previously. To a lesser extent, plasma AUC in blasted mice increased 14-45% compared with controls. Nevertheless, the effects of blast on cefazolin PK were transient, normalizing by 10 hours after the dose. It is unclear as to how this blast effect t emporally translates to humans; however, given the short-lived effect on PK, there is insufficient evidence to recommend cefazolin dosing changes based on blast overpressure injury alone. Clinicians should be aware that cefazolin may cause drug-induced liver injury with a single dose and the risk may be higher in patients with blast overpressure injury based on our findings. SIGNIFICANCE STATEMENT: Blast exposure significantly, but transiently, alters cefazolin pharmacokinetics in mice. The questions of whether other medications or potential long-term consequences in humans need further exploration.


Assuntos
Antibacterianos/farmacocinética , Traumatismos por Explosões/metabolismo , Cefazolina/farmacocinética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Modelos Biológicos , Animais , Antibacterianos/toxicidade , Traumatismos por Explosões/complicações , Traumatismos por Explosões/patologia , Cefazolina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pressão
2.
J Neurotrauma ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38047526

RESUMO

Blast exposure can cause auditory deficits that have a lasting, significant impact on patients. Although the effects of blast on auditory functions localized to the ear have been well documented, the impact of blast on central auditory processing is largely undefined. Understanding the structural and functional alterations in the central nervous system (CNS) associated with blast injuries is crucial for unraveling blast-induced pathophysiological pathways and advancing development of therapeutic interventions. In this study, we used electrophysiology in combination with optogenetics assay, proteomic analysis, and morphological evaluation to investigate the impairment of synaptic connectivity in the auditory cortex (AC) of mice following blast exposure. Our results show that the long-range functional connectivity between the medial geniculate nucleus (MGN) and AC was impaired in the acute phase of blast injury. We also identified impaired synaptic transmission and dendritic spine alterations within 7 days of blast exposure, which recovered at 28 days post-blast. Additionally, proteomic analysis identified a few differentially expressed proteins in the cortex that are involved in synaptic signaling and plasticity. These findings collectively suggest that blast-induced alterations in the sound signaling network in the auditory cortex may underlie hearing deficits in the acute and sub-acute phases after exposure to shockwaves. This study may shed light on the perturbations underlying blast-induced auditory dysfunction and provide insights into the potential therapeutic windows for improving auditory outcomes in blast-exposed individuals.

3.
J Fungi (Basel) ; 10(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786719

RESUMO

Wound-invasive fungal diseases (WIFDs), especially mucormycosis, have emerged as life-threatening infections during recent military combat operations. Many combat-relevant fungal pathogens are refractory to current antifungal therapy. Therefore, animal models of WIFDs are urgently needed to investigate new therapeutic solutions. Our study establishes combat-relevant murine models of wound mucormycosis using Rhizopus arrhizus and Lichtheimia corymbifera, two Mucorales species that cause wound mucormycosis worldwide. These models recapitulate the characteristics of combat-related wounds from explosions, including blast overpressure exposure, full-thickness skin injury, fascial damage, and muscle crush. The independent inoculation of both pathogens caused sustained infections and enlarged wounds. Histopathological analysis confirmed the presence of necrosis and fungal hyphae in the wound bed and adjacent muscle tissue. Semi-quantification of fungal burden by colony-forming units corroborated the infection. Treatment with liposomal amphotericin B, 30 mg/kg, effectively controlled R. arrhizus growth and significantly reduced residual fungal burden in infected wounds (p < 0.001). This study establishes the first combat-relevant murine model of wound mucormycosis, paving the way for developing and evaluating novel antifungal therapies against combat-associated WIFDs.

4.
Mil Med ; 188(Suppl 6): 271-279, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37948226

RESUMO

INTRODUCTION: Combat injuries are complex and multimodal. Most injuries to the extremities occur because of explosive devices such as improvised explosive devices. Blast exposure dramatically increases the risk of infection in combat wounds, and there is limited available information on the best antibiotic treatments for these injuries. We previously demonstrated that mice exposed to blast displayed a delayed clearance of cefazolin from the plasma and liver; further semi-mechanistic modeling determined that cefazolin concentrations in the skin of these mice were reduced. Our objective was to investigate the effects of blast on the pharmacokinetics of antibiotics of different types used for the treatment of combat wounds in the rat model. MATERIALS AND METHODS: Male Sprague Dawley rats were exposed to blast overpressure followed by injection of a bolus of animal equivalent doses of an antibiotic (cefazolin, cefepime, ertapenem, or clindamycin) into the tail vein at 1-hour post-blast exposure. Blood was collected at predetermined time points via repeated sampling from the tail vein. Animals were also euthanized at predetermined time points, at which time liver, kidney, skin, and blood via cardiac puncture were collected. Antibiotic concentrations were determined by ultra-performance liquid chromatography-tandem mass spectrometry. RESULTS: Blast-exposed rats exhibited a similar rate of clearance compared to non-blasted rats in the blood, liver, kidney, and skin, which is inconsistent with the data regarding cefazolin in blast-exposed mice. CONCLUSIONS: Our results in rats do not recapitulate our previous observation of delayed cefazolin clearance in mice following the blast overpressure exposure. Although using rats permitted us to collect multiple blood samples from the same animals, rats may not be a suitable model for measuring the pharmacokinetics of antibiotics following blast. The interpretation of the results may be challenging because of variation in data among rat subjects in the same sample groups.


Assuntos
Antibacterianos , Traumatismos por Explosões , Humanos , Ratos , Masculino , Camundongos , Animais , Ratos Sprague-Dawley , Antibacterianos/uso terapêutico , Traumatismos por Explosões/tratamento farmacológico , Cefazolina/uso terapêutico , Explosões , Modelos Animais de Doenças
5.
Front Bioeng Biotechnol ; 10: 821169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392409

RESUMO

Explosive devices, either conventional or improvised, are common sources of injuries during combat, civil unrest, and terror attacks, resulting in trauma from exposure to blast. A blast wave (BW), a near-instantaneous rise in pressure followed by a negative pressure, propagates through the body in milliseconds and can affect physiology for days/months after exposure. Epidemiological data show that blast-related casualties result in significantly higher susceptibility to wound infections, suggesting long-lasting immune modulatory effects from blast exposure. The mechanisms involved in BW-induced immune changes are poorly understood. We evaluated the effects of BW on the immune system using an established murine model. Animals were exposed to BWs (using an Advanced Blast Simulator), followed by longitudinally sampling for 14 days. Blood, bone marrow, and spleen were analyzed for changes in the 1) complete blood count (CBC), and 2) composition of bone marrow cells (BMC) and splenocytes, and 3) concentrations of systemic cytokines/chemokines. Our data demonstrate that BW results in transient bone marrow failure and long-term changes in the frequency and profile of progenitor cell populations. Viability progressively decreased in hematopoietic stem cells and pluripotent progenitor cells. Significant decrease of CD4+ T cells in the spleen indicates reduced functionality of adaptive immune system. Dynamic changes in the concentrations of several cytokines and chemokines such as IL-1α and IL-17 occurred potentially contributing to dysregulation of immune response after trauma. This work lays the foundation for identifying the potential mechanisms behind BW's immunosuppressive effects to inform the recognition of this compromised status is crucial for the development of therapeutic interventions for infections to reduce recovery time of wounded patients injured by explosive devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA