Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Appl Microbiol Biotechnol ; 104(22): 9693-9706, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32997203

RESUMO

Microbial production of antibodies offers the promise of cheap, fast, and efficient production of antibodies at an industrial scale. Limiting this capacity in prokaryotes is the absence of the post-translational machinery, present in dedicated antibody producing eukaryotic cell lines, such as B cells. There has been few and limited success in producing full-length, correctly folded, and assembled IgG in the cytoplasm of prokaryotic cell lines. One such success was achieved by utilizing the genetically engineered Escherichia coli strain SHuffle with an oxidative cytoplasm. Due to the genetic disruption of reductive pathways, SHuffle cells are under constant oxidative stress, including increased levels of hydrogen peroxide (H2O2). The oxidizing capacity of H2O2 was linked to improved disulfide bond formation, by expressing a fusion of two endoplasmic reticulum-resident proteins, the thiol peroxidase GPx7 and the protein disulfide isomerase, PDI. In concert, these proteins mediate disulfide transfer from H2O2 to target proteins via PDI-Gpx7 fusions. The potential of this new strain was tested with Humira, a blockbuster antibody usually produced in eukaryotic cells. Expression results demonstrate that the new engineered SHuffle strain (SHuffle2) could produce Humira IgG four-fold better than the parental strain, both in shake-flask and in high-density fermentation. These preliminary studies guide the field in genetically engineering eukaryotic redox pathways in prokaryotes for the production of complex macromolecules. KEY POINTS: • A eukaryotic redox pathway was engineered into the E. coli strain SHuffle in order to improve the yield of the blockbuster antibody Humira. • The best peroxidase-PDI fusion was selected using bioinformatics and in vivo studies. • Improved yields of Humira were demonstrated at shake-flask and high-density fermenters.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Adalimumab , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glutationa Peroxidase , Humanos , Peróxido de Hidrogênio , Peroxidases , Isomerases de Dissulfetos de Proteínas/genética
2.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31053583

RESUMO

The yeast Kluyveromyces lactis has been a successful host for the production of heterologous proteins for over 30 years. Currently, the galactose-/lactose-inducible and glucose-repressible LAC4 promoter (P LAC4 ) is the most widely used promoter to drive recombinant protein expression in K. lactis However, P LAC4 is not fully repressed in the presence of glucose and significant protein expression still occurs. Thus, P LAC4 is not suitable in processes where tight regulation of heterologous gene expression is required. In this study, we devised a novel K. lactis promoter system that is both strong and tightly controllable. We first tested several different endogenous K. lactis promoters for their ability to express recombinant proteins. A novel hybrid promoter (termed P350) was created by combining segments of two K. lactis promoters, namely, the strong constitutive P GAP1 promoter and the carbon source-sensitive P ICL1 promoter. We demonstrate that P350 is tightly repressed in the presence of glucose or glycerol and becomes derepressed upon depletion of these compounds by the growing cells. We further illustrate the utility of P350-controlled protein expression in shake flask and high-cell-density bioreactor cultivation strategies. The P350 hybrid promoter is a strong derepressible promoter for use in autoinduction of one-step fermentation processes for the production of heterologous proteins in K. lactisIMPORTANCE The yeast Kluyveromyces lactis is an important host for the expression of recombinant proteins at both laboratory and industrial scales. However, the system lacks a tightly regulated promoter that permits controlled expression of heterologous proteins. In this study, we report the engineering of a highly regulated strong hybrid promoter (termed P350) for use in K. lactis P350 is tightly repressed by glucose or glycerol in the medium but strongly promotes gene expression once the carbon source has been consumed by the cells. This feature permits heterologous protein expression to be "autoinduced" at any scale without the addition of a gratuitous inducer molecule or changing feed solutions.


Assuntos
Proteínas Fúngicas/genética , Expressão Gênica , Kluyveromyces/genética , Regiões Promotoras Genéticas , Proteínas Fúngicas/metabolismo , Kluyveromyces/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Proc Natl Acad Sci U S A ; 113(25): E3538-47, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27274079

RESUMO

Redox-cycling compounds, including endogenously produced phenazine antibiotics, induce expression of the efflux pump MexGHI-OpmD in the opportunistic pathogen Pseudomonas aeruginosa Previous studies of P. aeruginosa virulence, physiology, and biofilm development have focused on the blue phenazine pyocyanin and the yellow phenazine-1-carboxylic acid (PCA). In P. aeruginosa phenazine biosynthesis, conversion of PCA to pyocyanin is presumed to proceed through the intermediate 5-methylphenazine-1-carboxylate (5-Me-PCA), a reactive compound that has eluded detection in most laboratory samples. Here, we apply electrochemical methods to directly detect 5-Me-PCA and find that it is transported by MexGHI-OpmD in P. aeruginosa strain PA14 planktonic and biofilm cells. We also show that 5-Me-PCA is sufficient to fully induce MexGHI-OpmD expression and that it is required for wild-type colony biofilm morphogenesis. These physiological effects are consistent with the high redox potential of 5-Me-PCA, which distinguishes it from other well-studied P. aeruginosa phenazines. Our observations highlight the importance of this compound, which was previously overlooked due to the challenges associated with its detection, in the context of P. aeruginosa gene expression and multicellular behavior. This study constitutes a unique demonstration of efflux-based self-resistance, controlled by a simple circuit, in a Gram-negative pathogen.


Assuntos
Proteínas de Bactérias/fisiologia , Biofilmes/crescimento & desenvolvimento , Proteínas de Transporte/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Fenazinas/metabolismo , Pseudomonas aeruginosa/metabolismo
4.
Proc Natl Acad Sci U S A ; 109(47): 19420-5, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23129634

RESUMO

Evolutionary biologists have postulated that several fitness advantages may be conferred by the maintenance of duplicate genes, including environmental adaptation resulting from differential regulation. We examined the expression and physiological contributions of two redundant operons in the adaptable bacterium Pseudomonas aeruginosa PA14. These operons, phzA1-G1 (phz1) and phzA2-G2 (phz2), encode nearly identical sets of proteins that catalyze the synthesis of phenazine-1-carboxylic acid, the precursor for several phenazine derivatives. Phenazines perform diverse roles in P. aeruginosa physiology and act as virulence factors during opportunistic infections of plant and animal hosts. Although reports have indicated that phz1 is regulated by the Pseudomonas quinolone signal, factors controlling phz2 expression have not been identified, and the relative contributions of these redundant operons to phenazine biosynthesis have not been evaluated. We found that in liquid cultures, phz1 was expressed at higher levels than phz2, although phz2 showed a greater contribution to phenazine production. In colony biofilms, phz2 was expressed at high levels, whereas phz1 expression was not detectable, and phz2 was responsible for virtually all phenazine production. Analysis of mutants defective in quinolone signal synthesis revealed a critical role for 4-hydroxy-2-heptylquinoline in phz2 induction. Finally, deletion of phz2, but not of phz1, decreased lung colonization in a murine model of infection. These results suggest that differential regulation of the redundant phz operons allows P. aeruginosa to adapt to diverse environments.


Assuntos
Meio Ambiente , Regulação Bacteriana da Expressão Gênica , Óperon/genética , Fenazinas/imunologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Animais , Biofilmes/efeitos dos fármacos , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos/genética , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fenazinas/metabolismo , Plâncton/efeitos dos fármacos , Plâncton/microbiologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Quinolonas/farmacologia , Virulência/efeitos dos fármacos , Virulência/genética
5.
J Bacteriol ; 195(7): 1371-80, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23292774

RESUMO

Many microbial species form multicellular structures comprising elaborate wrinkles and concentric rings, yet the rules governing their architecture are poorly understood. The opportunistic pathogen Pseudomonas aeruginosa produces phenazines, small molecules that act as alternate electron acceptors to oxygen and nitrate to oxidize the intracellular redox state and that influence biofilm morphogenesis. Here, we show that the depth occupied by cells within colony biofilms correlates well with electron acceptor availability. Perturbations in the environmental provision, endogenous production, and utilization of electron acceptors affect colony development in a manner consistent with redox control. Intracellular NADH levels peak before the induction of colony wrinkling. These results suggest that redox imbalance is a major factor driving the morphogenesis of P. aeruginosa biofilms and that wrinkling itself is an adaptation that maximizes oxygen accessibility and thereby supports metabolic homeostasis. This type of redox-driven morphological change is reminiscent of developmental processes that occur in metazoans.


Assuntos
Biofilmes/crescimento & desenvolvimento , Citoplasma/metabolismo , Fenazinas/metabolismo , Pseudomonas aeruginosa/fisiologia , NAD/metabolismo , Oxirredução , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo
6.
J Vis Exp ; (133)2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29630036

RESUMO

Sectioning via paraffin embedding is a broadly established technique in eukaryotic systems. Here we provide a method for the fixation, embedding, and sectioning of intact microbial colony biofilms using perfused paraffin wax. To adapt this method for use on colony biofilms, we developed techniques for maintaining each sample on its growth substrate and laminating it with an agar overlayer, and added lysine to the fixative solution. These optimizations improve sample retention and preservation of micromorphological features. Samples prepared in this manner are amenable to thin sectioning and imaging by light, fluorescence, and transmission electron microscopy. We have applied this technique to colony biofilms of Pseudomonas aeruginosa, Pseudomonas synxantha, Bacillus subtilis, and Vibrio cholerae. The high level of detail visible in samples generated by this method, combined with reporter strain engineering or the use of specific dyes, can provide exciting insights into the physiology and development of microbial communities.


Assuntos
Biofilmes/crescimento & desenvolvimento , Microscopia/métodos , Microtomia/métodos , Inclusão em Parafina/métodos
7.
Nat Commun ; 7: 10535, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26813638

RESUMO

Monitoring spatial distribution of metabolites in multicellular structures can enhance understanding of the biochemical processes and regulation involved in cellular community development. Here we report on an electrochemical camera chip capable of simultaneous spatial imaging of multiple redox-active phenazine metabolites produced by Pseudomonas aeruginosa PA14 colony biofilms. The chip features an 8 mm × 8 mm array of 1,824 electrodes multiplexed to 38 parallel output channels. Using this chip, we demonstrate potential-sweep-based electrochemical imaging of whole-biofilms at measurement rates in excess of 0.2 s per electrode. Analysis of mutants with various capacities for phenazine production reveals distribution of phenazine-1-carboxylic acid (PCA) throughout the colony, with 5-methylphenazine-1-carboxylic acid (5-MCA) and pyocyanin (PYO) localized to the colony edge. Anaerobic growth on nitrate confirms the O2-dependence of PYO production and indicates an effect of O2 availability on 5-MCA synthesis. This integrated-circuit-based technique promises wide applicability in detecting redox-active species from diverse biological samples.


Assuntos
Biofilmes , Técnicas Eletroquímicas/métodos , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Piocianina/química , Técnicas Eletroquímicas/instrumentação , Oxirredução , Fenazinas/metabolismo , Piocianina/metabolismo
8.
Nat Commun ; 5: 3256, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24510163

RESUMO

Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. 'Images' over a 3.25 × 0.9 mm(2) area can be captured with a diffusion-limited spatial resolution of 750 µm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 µM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.


Assuntos
Técnicas Eletroquímicas/instrumentação , Fenazinas/química , Pseudomonas aeruginosa/metabolismo , Biofilmes , Difusão , Oxirredução , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética
9.
Cell Rep ; 4(4): 697-708, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23954787

RESUMO

Most bacteria in nature live in surface-associated communities rather than planktonic populations. Nonetheless, how surface-associated environments shape bacterial evolutionary adaptation remains poorly understood. Here, we show that subjecting Pseudomonas aeruginosa to repeated rounds of swarming, a collective form of surface migration, drives remarkable parallel evolution toward a hyperswarmer phenotype. In all independently evolved hyperswarmers, the reproducible hyperswarming phenotype is caused by parallel point mutations in a flagellar synthesis regulator, FleN, which locks the naturally monoflagellated bacteria in a multiflagellated state and confers a growth rate-independent advantage in swarming. Although hyperswarmers outcompete the ancestral strain in swarming competitions, they are strongly outcompeted in biofilm formation, which is an essential trait for P. aeruginosa in environmental and clinical settings. The finding that evolution in swarming colonies reliably produces evolution of poor biofilm formers supports the existence of an evolutionary trade-off between motility and biofilm formation.


Assuntos
Biofilmes , Evolução Molecular , Pseudomonas aeruginosa/fisiologia , Sequência de Aminoácidos , Aderência Bacteriana , Proteínas de Bactérias/genética , Dados de Sequência Molecular , Fenótipo , Mutação Puntual , Pseudomonas aeruginosa/genética , Seleção Genética , Transativadores/genética
10.
Antioxid Redox Signal ; 16(7): 658-67, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21883044

RESUMO

SIGNIFICANCE: Plant biologists and microbiologists have long discussed and debated the physiological roles of so-called "redox-active metabolites." These are natural products with unusually high redox activity that are not directly required for active growth. Generally, the biological roles of these compounds have been ascribed to interspecies competition and virulence, and they have been considered important sources of distress. RECENT ADVANCES: In this review, we discuss two examples of redox-active metabolites: nitric oxide and phenazines. Both are known for their toxic effects in some organisms and conditions but have recently been shown to provide benefits for some organisms under other conditions. CRITICAL ISSUES: Biologists are identifying new roles for redox-active metabolites that are not directly related to their toxicity. These roles prompt us to suggest a dismissal of the paradigm that all biological stress is negative (i.e., distress). FUTURE DIRECTIONS: A more accurate view of redox couples requires characterization of their specific biological effects in a condition-dependent manner. The responses to these compounds can be termed "distress" or "eustress," depending on whether they inhibit survival, provide protection from a compound that would otherwise inhibit survival, or promote survival.


Assuntos
Bactérias/metabolismo , Transdução de Sinais , Estresse Fisiológico/fisiologia , Óxido Nítrico/metabolismo , Oxirredução , Fenazinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA