Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 62(4): 1437-1446, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36652943

RESUMO

An electrocatalyst with a large active site is critical for the development of a high-performance electrochemical sensor. This work demonstrates the fabrication of an iron diselenide (FeSe2)-modified screen-printed carbon electrode (SPCE) for the electrochemical determination of furaltadone (FLD). It has been prepared by the facile method and systematically characterized with various microscopic/spectroscopic approaches. Due to advantageous physiochemical properties, the FeSe2/SPCE showed a low charge-transfer resistance value of 200 Ω in 5.0 mM [Fe(CN)6]3-/4- containing 0.1 M KCl. More importantly, the FeSe2/SPCE exhibited superior catalytic performance compared to the bare SPCE for FLD sensing based on the electrochemical response in terms of a peak potential of -0.44 V (vs Ag/AgCl (sat. KCl)) and cathodic response current of -22.8 µA. Operating at optimal conditions, the FeSe2-modified electrode showed wide linearity from 0.01 to 252.2 µM with a limit of detection of 0.002 µM and sensitivity of 1.15 µA µM-1 cm-2. The analytical performance of the FeSe2-based platform is significantly higher than many previously reported FLD electrochemical sensors. Furthermore, the FeSe2/SPCE also has a promising platform for FLD detection with high sensitivity, good selectivity, excellent stability, and robust reproducibility. Thus, the finding above shows that the FeSe2/SPCE is a highly suitable candidate for the electrochemical determination of glucose levels for real-time applications such as in human urine and river water samples.

2.
Langmuir ; 38(33): 10162-10172, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35939572

RESUMO

Binary metal oxides with carbon nanocomposites have received extensive attention as research hotspots in the electrochemistry field owing to their tunable properties and superior stability. This work illustrates the development of a facile sonochemical strategy for the synthesis of a copper bismuthate/graphene (GR) nanocomposite-modified screen-printed carbon electrode (CBO/GR/SPCE) for the electrochemical detection of catechol (CT). The formation of an as-prepared CBO/GR nanocomposite was comprehensively characterized. The electrochemical behavior of the CBO/GR/SPCE toward CT was investigated by voltammetry and amperometry techniques. The fabricated CBO/GR/SPCE manifests an excellent electrocatalytic performance toward CT with a lower peak potential and a higher current value compared to those of CBO/SPCE, GR/SPCE, and bare SPCE. It is attributed to enhanced electro-catalytic activity, synergetic effects, and good active sites of the CBO/GR nanocomposite. Under the electrochemical condition, the CBO/GR/SPCE displayed a wide linear sensing range, trace-level detection limit, acceptable sensitivity, and excellent selectivity. Furthermore, our proposed CBO/GR electrode was employed successfully for CT detection in water samples.


Assuntos
Grafite , Nanocompostos , Carbono , Catecóis , Cobre/química , Técnicas Eletroquímicas , Eletrodos , Grafite/química , Nanocompostos/química
3.
Chemosphere ; 307(Pt 1): 135711, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35843428

RESUMO

Herein, an electrochemical sensor based on samarium oxide anchored, reduced graphene oxide (Sm2O3/RGO) nanocomposite was developed for the rapid detection of carbendazim (CBZ). Different characterization methods were infused to deeply examine the morphology, composition, and elemental state of Sm2O3/RGO nanocomposite. The Sm2O3/RGO modified electrode exhibits an excellent electro-catalytic performance toward CBZ detection with a peak potential of +1.04 V in phosphate buffer solution (pH 3.0), which is superior to the RGO-, Sm2O3- and bare- electrodes. This remarkable activity can be credited to the synergetic effect generated by the robust interaction between Sm2O3 and RGO, resulting in a well-enhanced electrochemical sensing ability. Impressively, the fabricated sensor shows improved electrochemical performance in terms of the wide working range, detection limit, and strong sensitivity. On a peculiar note, the electrochemical sensing performances of CBZ detection based on Sm2O3/RGO nanocomposite demonstrate an extraordinary behavior compared to the prior documented electro-catalyst. In addition, the fabricated Sm2O3/RGO sensor also displays good operational stability, reproducibility, and repeatability towards the detection of CBZ. Furthermore, it was successfully applied to the CBZ detection in food and environmental water samples with satisfactory recovery. In accordance with our research findings, the Sm2O3/RGO nanocomposite could be used as an electro-active material for effectual electrochemical sensing of food and environmental pollutants.


Assuntos
Poluentes Ambientais , Grafite , Nanocompostos , Benzimidazóis , Carbamatos , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Nanocompostos/química , Óxidos , Fosfatos , Reprodutibilidade dos Testes , Samário , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA