Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(37): 13523-8, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25197056

RESUMO

The torque of the bacterial flagellum is generated by the rotor-stator interaction coupled with the ion flow through the channel in the stator. Anchoring the stator unit to the peptidoglycan layer with proper orientation around the rotor is believed to be essential for smooth rotation of the flagellar motor. The stator unit of the sodium-driven flagellar motor of Vibrio is composed of PomA and PomB, and is thought to be fixed to the peptidoglycan layer and the T-ring by the C-terminal periplasmic region of PomB. Here, we report the crystal structure of a C-terminal fragment of PomB (PomBC) at 2.0-Å resolution, and the structure suggests a conformational change in the N-terminal region of PomBC for anchoring the stator. On the basis of the structure, we designed double-Cys replaced mutants of PomB for in vivo disulfide cross-linking experiments and examined their motility. The motility can be controlled reproducibly by reducing reagent. The results of these experiments suggest that the N-terminal disordered region (121-153) and following the N-terminal two-thirds of α1(154-164) in PomBC changes its conformation to form a functional stator around the rotor. The cross-linking did not affect the localization of the stator nor the ion conductivity, suggesting that the conformational change occurs in the final step of the stator assembly around the rotor.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Periplasma/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Cisteína/genética , Dissulfetos/metabolismo , Flagelos/efeitos dos fármacos , Íons , Modelos Moleculares , Mutação/genética , Periplasma/efeitos dos fármacos , Estrutura Terciária de Proteína , Substâncias Redutoras/farmacologia , Sódio/metabolismo , Compostos de Sulfidrila/metabolismo , Vibrio/efeitos dos fármacos , Vibrio/metabolismo
2.
Proc Natl Acad Sci U S A ; 110(15): 6133-8, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23530206

RESUMO

Flagellar motility is a key factor for bacterial survival and growth in fluctuating environments. The polar flagellum of a marine bacterium, Vibrio alginolyticus, is driven by sodium ion influx and rotates approximately six times faster than the proton-driven motor of Escherichia coli. The basal body of the sodium motor has two unique ring structures, the T ring and the H ring. These structures are essential for proper assembly of the stator unit into the basal body and to stabilize the motor. FlgT, which is a flagellar protein specific for Vibrio sp., is required to form and stabilize both ring structures. Here, we report the crystal structure of FlgT at 2.0-Å resolution. FlgT is composed of three domains, the N-terminal domain (FlgT-N), the middle domain (FlgT-M), and the C-terminal domain (FlgT-C). FlgT-M is similar to the N-terminal domain of TolB, and FlgT-C resembles the N-terminal domain of FliI and the α/ß subunits of F1-ATPase. To elucidate the role of each domain, we prepared domain deletion mutants of FlgT and analyzed their effects on the basal-body ring formation. The results suggest that FlgT-N contributes to the construction of the H-ring structure, and FlgT-M mediates the T-ring association on the LP ring. FlgT-C is not essential but stabilizes the H-ring structure. On the basis of these results, we propose an assembly mechanism for the basal-body rings and the stator units of the sodium-driven flagellar motor.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Bactérias/fisiologia , Flagelos/fisiologia , Proteínas Motores Moleculares/química , Sódio/química , Vibrio alginolyticus/fisiologia , Proteínas de Bactérias/química , Membrana Celular/fisiologia , Cristalografia por Raios X , Escherichia coli , Proteínas de Escherichia coli/química , Flagelos/química , Hidrogênio/química , Modelos Moleculares , Mutação , Peptidoglicano/química , Proteínas Periplásmicas/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
3.
J Biol Chem ; 288(24): 17451-9, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23640894

RESUMO

Elastase from Aspergillus sp. is an important factor for aspergillosis. AFUEI is an inhibitor of the elastase derived from Aspergillus fumigatus. AFUEI is a member of the I78 inhibitor family and has a high inhibitory activity against elastases of Aspergillus fumigatus and Aspergillus flavus, human neutrophil elastase and bovine chymotrypsin, but does not inhibit bovine trypsin. Here we report the crystal structure of AFUEI in two crystal forms. AFUEI is a wedge-shaped protein composed of an extended loop and a scaffold protein core. The structure of AFUEI shows remarkable similarity to serine protease inhibitors of the potato inhibitor I family, although they are classified into different inhibitor families. A structural comparison with the potato I family inhibitors suggests that the extended loop of AFUEI corresponds to the binding loop of the potato inhibitor I family, and AFUEI inhibits its cognate proteases through the same mechanism as the potato I family inhibitors.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas/química , Inibidores de Serina Proteinase/química , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas Fúngicas/isolamento & purificação , Humanos , Ligação de Hidrogênio , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/química , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Inibidores de Serina Proteinase/isolamento & purificação
4.
J Biol Chem ; 286(49): 42200-42210, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21979954

RESUMO

Escherichia coli has closely related amino acid chemoreceptors with distinct ligand specificity, Tar for l-aspartate and Tsr for l-serine. Crystallography of the ligand-binding domain of Tar identified the residues interacting with aspartate, most of which are conserved in Tsr. However, swapping of the nonconserved residues between Tsr and Tar did not change ligand specificity. Analyses with chimeric receptors led us to hypothesize that distinct three-dimensional arrangements of the conserved ligand-binding residues are responsible for ligand specificity. To test this hypothesis, the structures of the apo- and serine-binding forms of the ligand-binding domain of Tsr were determined at 1.95 and 2.5 Å resolutions, respectively. Some of the Tsr residues are arranged differently from the corresponding aspartate-binding residues of Tar to form a high affinity serine-binding pocket. The ligand-binding pocket of Tsr was surrounded by negatively charged residues, which presumably exclude negatively charged aspartate molecules. We propose that all these Tsr- and Tar-specific features contribute to specific recognition of serine and aspartate with the arrangement of the side chain of residue 68 (Asn in Tsr and Ser in Tar) being the most critical.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Células Quimiorreceptoras/metabolismo , Cristalografia por Raios X/métodos , Cinética , Ligantes , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
5.
Proc Natl Acad Sci U S A ; 105(22): 7696-701, 2008 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-18505842

RESUMO

Rotation of the sodium-driven polar flagellum of Vibrio alginolyticus requires four motor proteins: PomA, PomB, MotX, and MotY. PomA and PomB form a sodium-ion channel in the cytoplasmic membrane that functions as a stator complex to couple sodium-ion flux with torque generation. MotX and MotY are components of the T-ring, which is located beneath the P-ring of the polar flagellar basal body and is involved in incorporation of the PomA/PomB complex into the motor. Here, we describe the determination of the crystal structure of MotY at 2.9 A resolution. The structure shows two distinct domains: an N-terminal domain (MotY-N) and a C-terminal domain (MotY-C). MotY-N has a unique structure. MotY-C contains a putative peptidoglycan-binding motif that is remarkably similar to those of peptidoglycan-binding proteins, such as Pal and RmpM, but this region is disordered in MotY. Motility assay of cells producing either of the MotY-N and MotY-C fragments and subsequent biochemical analyses indicate that MotY-N is essential for association of the stator units around the rotor, whereas MotY-C stabilizes the association by binding to the peptidoglycan layer. Based on these observations, we propose a model for the mechanism of stator assembly around the rotor.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Flagelos/química , Vibrio alginolyticus/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Flagelos/metabolismo , Flagelos/fisiologia , Dados de Sequência Molecular , Peptidoglicano/química , Peptidoglicano/metabolismo , Estrutura Terciária de Proteína , Vibrio alginolyticus/fisiologia
6.
mBio ; 12(2)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653894

RESUMO

The bacterial flagellum is a protein nanomachine essential for bacterial motility. The flagellar basal body contains several ring structures. The MS-ring is embedded in the cytoplasmic membrane and is formed at the earliest stage of flagellar formation to serve as the base for flagellar assembly as well as a housing for the flagellar protein export gate complex. The MS-ring is formed by FliF, which has two transmembrane helices and a large periplasmic region. A recent electron cryomicroscopy (cryoEM) study of the MS-ring formed by overexpressed FliF revealed a symmetry mismatch between the S-ring and inner part of the M-ring. However, the actual symmetry relation in the native MS-ring and positions of missing domains remain obscure. Here, we show the structure of the M-ring by combining cryoEM and X-ray crystallography. The crystal structure of the N-terminal half of the periplasmic region of FliF showed that it consists of two domains (D1 and D2) resembling PrgK D1/PrgH D2 and PrgK D2/PrgH D3 of the injectisome. CryoEM analysis revealed that the inner part of the M-ring shows a gear wheel-like density with the inner ring of C23 symmetry surrounded by cogs with C11 symmetry, to which 34 copies of FliFD1-D2 fitted well. We propose that FliFD1-D2 adopts two distinct orientations in the M-ring relative to the rest of FliF, with 23 chains forming the wheel and 11 chains forming the cogs, and the 34 chains come together to form the S-ring with C34 symmetry for multiple functions of the MS-ring.IMPORTANCE The bacterial flagellum is a motility organelle formed by tens of thousands of protein molecules. At the earliest stage of flagellar assembly, a transmembrane protein, FliF, forms the MS-ring in the cytoplasmic membrane as the base for flagellar assembly. Here, we solved the crystal structure of a FliF fragment. Electron cryomicroscopy (cryoEM) structural analysis of the MS-ring showed that the M-ring and S-ring have different rotational symmetries. By docking the crystal structure of the FliF fragment into the cryoEM density map of the entire MS-ring, we built a model of the whole periplasmic region of FliF and proposed that FliF adopts two distinct conformations to generate three distinct C11, C23, and C34 symmetries within the MS-ring for its multiple functions.


Assuntos
Proteínas de Bactérias/química , Flagelos/química , Proteínas de Membrana/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Flagelos/ultraestrutura , Simulação de Acoplamento Molecular , Estrutura Secundária de Proteína
7.
Mol Microbiol ; 73(4): 710-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19627504

RESUMO

Torque generation in the Salmonella flagellar motor is coupled to translocation of H(+) ions through the proton-conducting channel of the Mot protein stator complex. The Mot complex is believed to be anchored to the peptidoglycan (PG) layer by the putative peptidoglycan-binding (PGB) domain of MotB. Proton translocation is activated only when the stator is installed into the motor. We report the crystal structure of a C-terminal periplasmic fragment of MotB (MotB(C)) that contains the PGB domain and includes the entire periplasmic region essential for motility. Structural and functional analyses indicate that the PGB domains must dimerize in order to form the proton-conducting channel. Drastic conformational changes in the N-terminal portion of MotB(C) are required both for PG binding and the proton channel activation.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Proteínas Motores Moleculares/metabolismo , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Proteínas Motores Moleculares/genética , Periplasma/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Salmonella typhimurium/genética
8.
J Biochem ; 166(2): 197-204, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30989194

RESUMO

Bacteria have evolved various types of flagellum, an organella for bacterial motility, to adapt to their habitat environments. The number and the spatial arrangement of the flagellum are precisely controlled to optimize performance of each type of the flagellar system. Vibrio alginolyticus has a single sheathed flagellum at the cell pole for swimming. SflA is a regulator protein to prevent peritrichous formation of the sheathed flagellum, and consists of an N-terminal periplasmic region, a transmembrane helix, and a C-terminal cytoplasmic region. Whereas the cytoplasmic region has been characterized to be essential for inhibition of the peritrichous growth, the role of the N-terminal region is still unclear. We here determined the structure of the N-terminal periplasmic region of SflA (SflAN) at 1.9-Å resolution. The core of SflAN forms a domain-swapped dimer with tetratricopeptide repeat (TPR)/Sel1-like repeat (SLR) motif, which is often found in the domains responsible for protein-protein interaction in various proteins. The structural similarity and the following mutational analysis based on the structure suggest that SflA binds to unknown partner protein by SflAN and the binding signal is important for the precise control of the SflA function.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Repetições de Tetratricopeptídeos/genética , Vibrio alginolyticus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Flagelos/genética , Ligação Proteica , Vibrio alginolyticus/genética
9.
mBio ; 10(2)2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890608

RESUMO

Many motile bacteria swim or swarm using a filamentous rotating organelle, the flagellum. FliL, a component protein of the flagellar motor, is known to enhance the motor performance under high-load conditions in some bacteria. Here we determined the structure of the periplasmic region of FliL (FliLPeri) of the polar flagellum of Vibrio alginolyticus FliLPeri shows a remarkable structural similarity to the stomatin/prohibitin/flotillin/HflK/C (SPFH) domain of stomatin family proteins, some of which are involved in modulation of ion channel activities in various organisms. FliLPeri forms a ring assembly in the crystal with an inner diameter of around 8 nm, which is comparable to the size of the stator unit. Mutational analyses suggest that the FliL ring forms a complex with the stator unit and that the length of the periplasmic linkers of FliL and the stator B-subunit is essential for the complex formation. We propose a model of the FliL-stator complex to discuss how Vibrio FliL modulates stator function in the bacterial flagellar motor under conditions of high viscosity.IMPORTANCE Some flagellated bacteria regulate motor torque in response to the external load change. This behavior is critical for survival, but the mechanism has remained unknown. Here, we focused on a key protein, FliL of Vibrio alginolyticus, and solved the crystal structure of its periplasmic region (FliLPeri). FliLPeri reveals striking structural similarity to a conserved domain of stomatin, which is involved in ion channel regulation in some organisms, including mammals. FliLPeri forms a ring with an inner diameter that is comparable in size to the stator unit. The mutational analyses suggested that the presence of the ring-like assembly of FliL around the stator unit enhances the surface swarming of Vibrio cells. Our study data also imply that the structural element for the ion channel regulation is conserved from bacteria to mammals.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Flagelos/enzimologia , Flagelos/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Movimento (Física) , Vibrio alginolyticus/enzimologia , Vibrio alginolyticus/fisiologia , Proteínas de Bactérias/genética , Cristalografia por Raios X , Análise Mutacional de DNA , Proteínas de Membrana/genética , Conformação Proteica , Multimerização Proteica
10.
Structure ; 26(4): 590-598.e5, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29576320

RESUMO

The stator of the bacterial flagellar motor couples ion flow with torque generation. The ion-conducting stator channel opens only when incorporated into and anchored around the rotor via the peptidoglycan (PG) binding domain of the B subunit (MotBC). However, no direct evidence of PG binding coupled with channel activation has been presented. Here, we report the structural rearrangements of MotBC responsible for this coupling process. A MotBC fragment with the L119P replacement, which is known to cause channel activation, was able to bind PG. Nuclear magnetic resonance analysis of MotBC and the crystal structure of the MotBC-L119P dimer revealed major structural changes in helix α1. In vivo crosslinking results confirm that a major rearrangement occurs. Our results suggest that, upon stator incorporation into the motor, helix α1 of MotBC changes into an extended non-helical structure. We propose that this change allows the stator both to bind PG and to open its proton channel.


Assuntos
Proteínas de Bactérias/química , Flagelos/química , Peptidoglicano/química , Periplasma/química , Prótons , Salmonella enterica/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Flagelos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Transporte de Íons , Modelos Moleculares , Mutação , Peptidoglicano/metabolismo , Periplasma/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella enterica/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-17277446

RESUMO

The polar flagellum of Vibrio alginolyticus is rotated by the sodium motor. The stator unit of the sodium motor consists of four different proteins: PomA, PomB, MotX and MotY. MotX and MotY, which are unique components of the sodium motor, form the T-ring structure attached to the LP ring in the periplasmic space. MotY has a putative peptidoglycan-binding motif in its C-terminal region and MotX is suggested to interact with PomB. Thus, MotX and MotY are thought to be required for incorporation and stabilization of the PomA/B complex. In this study, mature MotY composed of 272 amino-acid residues and its SeMet derivative were expressed with a C-terminal hexahistidine-tag sequence, purified and crystallized. Native crystals were grown in the hexagonal space group P6(1)22/P6(5)22, with unit-cell parameters a = b = 104.1, c = 132.6 A. SeMet-derivative crystals belonged to the same space group with the same unit-cell parameters as the native crystals. Anomalous difference Patterson maps of the SeMet derivative showed significant peaks in their Harker sections, indicating that the derivatives are suitable for structure determination.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas Motores Moleculares/química , Vibrio alginolyticus/química , Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas da Membrana Bacteriana Externa/genética , Cristalização , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Flagelos/química , Proteínas Motores Moleculares/biossíntese , Proteínas Motores Moleculares/genética , Vibrio alginolyticus/genética
12.
J Biochem ; 161(4): 331-337, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28013221

RESUMO

The flagellar motor is embedded in the cell envelope and rotates upon interaction between the stator and the rotor. The rotation is powered by ion flow through the stator. A single transmembrane protein named FliL is associated with torque generation in the flagellar motor. We established an Escherichia coli over-expression system for FliL of Vibrio alginolyticus, a marine bacterium that has a sodium-driven polar flagellum. We successfully expressed, purified, and crystallized the ca. 17 kDa full-length FliL protein and generated a construct that expresses only the ca. 14 kDa periplasmic region of FliL (ΔTM FliL). Biochemical characterization and NMR analysis revealed that ΔTM FliL weakly interacted with itself to form an oligomer. We speculate that the observed dynamic interaction may be involved in the role of FliL in flagellar motor function.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Flagelos/metabolismo , Proteínas de Membrana/metabolismo , Vibrio alginolyticus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação , Periplasma/metabolismo , Sódio/metabolismo , Vibrio alginolyticus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA