Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Top Dev Biol ; 150: 129-148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35817501

RESUMO

The interfollicular epidermis is the multilayered epithelium that forms the outer layer of the skin. It is maintained by stem cells that are attached to a basement membrane, which lies on top of the underlying connective tissue, the dermis. Cells undergo terminal differentiation as they detach from the basement membrane and move toward the outer epidermal surface. Over time, many of the molecular regulators of this process have been identified. It is now is clear that these pathways also receive critical input from the physical properties of the tissue. In this review, we describe how changes in these factors regulate differentiation and how new insights from single cell RNA sequencing could provide validation or challenge to the existing experimental models.


Assuntos
Adesivos , Células Epidérmicas , Adesivos/metabolismo , Diferenciação Celular , Epiderme/fisiologia , Humanos , Pele
2.
Front Cell Dev Biol ; 9: 675080, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124060

RESUMO

We have examined the developmental origins of Ng2+ perivascular cell populations that adhere to the basement membrane of blood vessels, and their contribution to wound healing. Neural/glial antigen 2 (Ng2) labeled most perivascular cells (70-80%) in developing and adult mouse back skin, a higher proportion than expressed by other pericyte markers Tbx18, Nestin and Pdgfrß. In adult mouse back skin Ng2+ perivascular cells could be categorized into 4 populations based on whether they expressed Pdgfrα and Pdgfrß individually or in combination or were Pdgfr-negative. Lineage tracing demonstrated that although Ng2+ cells in embryonic and neonatal back skin contributed to multiple cell types they did not give rise to interfollicular fibroblasts within the dermis. Lineage tracing of distinct fibroblast populations during skin development showed that papillary fibroblasts (Lrig1+) gave rise to Ng2+ perivascular cells in the upper dermis, whilst Ng2+ perivascular cells in the lower dermis were primarily derived from reticular Dlk1+ fibroblasts. Following wounding of adult skin, Ng2+ dermal cells only give rise to Ng2+ blood vessel associated cells and did not contribute to other fibroblast lineages. The relative abundance of Ng2+ Pdgfrß+ perivascular populations was comparable in wounded and non-wounded skin, indicating that perivascular heterogeneity was maintained during full thickness skin repair. In the wound bed Ng2+ perivascular populations were primarily derived from Lrig1+ papillary or Dlk1+ reticular fibroblast lineages, according to the location of the regenerating blood vessels. We conclude that Ng2+ perivascular cells represent a heterogeneous lineage restricted population that is primarily recruited from the papillary or reticular fibroblast lineages during tissue regeneration.

3.
Stem Cell Reports ; 16(11): 2628-2641, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34678211

RESUMO

Quantitative analysis of human induced pluripotent stem cell (iPSC) lines from healthy donors is a powerful tool for uncovering the relationship between genetic variants and cellular behavior. We previously identified rare, deleterious non-synonymous single nucleotide variants (nsSNVs) in cell adhesion genes that are associated with outlier iPSC phenotypes in the pluripotent state. Here, we generated micropatterned colonies of iPSCs to test whether nsSNVs influence patterning of radially ordered germ layers. Using a custom-built image analysis pipeline, we quantified the differentiation phenotypes of 13 iPSC lines that harbor nsSNVs in genes related to cell adhesion or germ layer development. All iPSC lines differentiated into the three germ layers; however, there was donor-specific variation in germ layer patterning. We identified one line that presented an outlier phenotype of expanded endodermal differentiation, which was associated with a nsSNV in ITGB1. Our study establishes a platform for investigating the impact of nsSNVs on differentiation.


Assuntos
Diferenciação Celular/genética , Endoderma/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Integrina beta1/genética , Polimorfismo de Nucleotídeo Único , Adesão Celular/genética , Linhagem Celular , Endoderma/citologia , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Perfilação da Expressão Gênica/métodos , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fenótipo , Proteômica/métodos , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
4.
Oncotarget ; 10(63): 6791-6804, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31827722

RESUMO

Inactivating mutations in the EGF-like ligand binding domain of NOTCH1 are a prominent feature of the mutational landscape of oral squamous cell carcinoma (OSCC). In this study, we investigated NOTCH1 mutations in keratinocyte lines derived from OSCC biopsies that had been subjected to whole exome sequencing. One line, SJG6, was found to have truncating mutations in both NOTCH1 alleles, resulting in loss of NOTCH1 expression. Overexpression of the NOTCH1 intracellular domain (NICD) in SJG6 cells promoted cell adhesion and differentiation, while suppressing proliferation, migration and clonal growth, consistent with the previously reported tumour suppressive function of NOTCH1 in OSCC. Comparative gene expression profiling identified SERPINE1 as being downregulated on NICD overexpression and predicted an interaction between SERPINE1 and genes involved in cell proliferation and migration. Mechanistically, overexpression of NICD resulted in upregulation of ETV7/TEL2, which negatively regulates SERPINE1 expression. Knockdown of SERPINE1 phenocopied the effects of NICD overexpression in culture. Consistent with previous studies and our in vitro findings, there were inverse correlations between ETV7 and SERPINE1 expression and survival in OSCC primary tumours. Our results suggest that the tumour suppressive role of NOTCH1 in OSCC is mediated, at least in part, by inhibition of SERPINE1 via ETV7.

5.
Acta Biomater ; 87: 256-264, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30710711

RESUMO

In human skin the junction between epidermis and dermis undulates, the width and depth of the undulations varying with age and disease. When primary human epidermal keratinocytes are seeded on collagen-coated polydimethylsiloxane (PDMS) elastomer substrates that mimic the epidermal-dermal interface, the stem cells become patterned by 24 h, resembling their organisation in living skin. We found that cell density and nuclear height were higher at the base than the tips of the PDMS features. Cells on the tips not only expressed higher levels of the stem cell marker ß1 integrin but also had elevated E-cadherin, Desmoglein 3 and F-actin than cells at the base. In contrast, levels of the transcriptional cofactor MAL were higher at the base. AFM measurements established that the Young's modulus of cells on the tips was lower than on the base or cells on flat substrates. The differences in cell stiffness were dependent on Rho kinase activity and intercellular adhesion. On flat substrates the Young's modulus of calcium-dependent intercellular junctions was higher than that of the cell body, again dependent on Rho kinase. Cell patterning was influenced by the angle of the slope on undulating substrates. Our observations are consistent with the concept that epidermal stem cell patterning is dependent on mechanical forces exerted at intercellular junctions in response to undulations in the epidermal-dermal interface. STATEMENT OF SIGNIFICANCE: In human skin the epidermal-dermal junction undulates and epidermal stem cells are patterned according to their position. We previously created collagen-coated polydimethylsiloxane (PDMS) elastomer substrates that mimic the undulations and provide sufficient topographical information for stem cells to cluster on the tips. Here we show that the stiffness of cells on the tips is lower than cells on the base. The differences in cell stiffness depend on Rho kinase activity and intercellular adhesion. We propose that epidermal stem cell patterning is determined by mechanical forces exerted at intercellular junctions in response to the slope of the undulations.


Assuntos
Derme/metabolismo , Dimetilpolisiloxanos/química , Elastômeros/química , Epiderme/metabolismo , Queratinócitos/metabolismo , Células-Tronco/metabolismo , Antígenos de Diferenciação/biossíntese , Derme/citologia , Módulo de Elasticidade , Humanos , Queratinócitos/citologia , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA