Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomed Microdevices ; 20(3): 66, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30088103

RESUMO

In recent years, there has been growing interest in optically-encoded or tagged functionalized microbeads as a solid support platform to capture proteins or nucleotides which may serve as biomarkers of various diseases. Multiplexing technologies (suspension array or planar array) based on optically encoded microspheres have made possible the observation of relatively minor changes in biomarkers related to specific diseases. The ability to identify these changes at an early stage may allow the diagnosis of serious diseases (e.g. cancer) at a time-point when curative treatment may still be possible. As the overall accuracy of current diagnostic methods for some diseases is often disappointing, multiplexed assays based on optically encoded microbeads could play an important role to detect biomarkers of diseases in a non-invasive and accurate manner. However, detection systems based on functionalized encoded microbeads are still an emerging technology, and more research needs to be done in the future. This review paper is a preliminary attempt to summarize the state-of-the-art concerning diagnostic microbeads; including microsphere composition, synthesis, encoding technology, detection systems, and applications.


Assuntos
Análise em Microsséries , Microesferas , Linhagem Celular Tumoral , Simulação por Computador , Citometria de Fluxo , Corantes Fluorescentes , Humanos , Nanopartículas/química , Neoplasias/diagnóstico , Fenômenos Ópticos , Polimerização , Proteínas/química , Propriedades de Superfície
2.
Bioeng Transl Med ; 8(1): e10347, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684103

RESUMO

A proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon-based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon-based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied.

3.
BMC Biomed Eng ; 4(1): 5, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596200

RESUMO

BACKGROUND: Gluten, a food allergen, is available in foods derived from wheat, rye and barley. It damages the small intestine and causes celiac disease. Herein, we designed a rapid immunochromatographic lateral flow test assay for detecting the gluten contents of raw materials. In this rapid test, the presence of gluten was screened through the capturing of gliadin (a toxic component of gluten) by two identical gliadin monoclonal antibodies. One of the antibodies was immobilized on the membrane in the test zone as a capture reagent. The other antibody was labeled with gold nanoparticles (AuNPs) as a detector reagent. RESULTS: Gold nanoparticles with a size of about 20 nm were synthesized and conjugated to the gliadin monoclonal antibodies. The detection limit of the experimental assay was 20 ppm and positive results were visualized after 15 min using only 40 µL of the extracted sample for each test. Analysis of different flour samples identified the best sensitivity and specificity of the lateral flow test strip (LFTS). CONCLUSION: The experimental LFTS is an easy-to-use and rapid method for the screening of gluten level in raw materials. The LFTS may be employed to ensure the safety of foods.

4.
Anal Chim Acta ; 1032: 1-17, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30143206

RESUMO

Early diagnosis of diseases (before they become advanced and incurable) is essential to reduce morbidity and mortality rates. With the advent of novel technologies in clinical laboratory diagnosis, microbead-based arrays have come to be recognized as an efficient approach, that demonstrates useful advantages over traditional assay methods for multiple disease-related biomarkers. Multiplexed microbead assays provide a robust, rapid, specific, and cost-effective approach for high-throughput and simultaneous screening of many different targets. Biomolecular binding interactions occur after applying a biological sample (such as blood plasma, saliva, cerebrospinal fluid etc.) containing the target analyte(s) to a set of microbeads with different ligand-specificities that have been coded in planar or suspension arrays. The ligand-receptor binding activity is tracked by optical signals generated by means of flow cytometry analysis in the case of suspension arrays, or by image processing devices in the case of planar arrays. In this review paper, we discuss diagnosis of cancer, neurological and infectious diseases by using optically-encoded microbead-based arrays (both multiplexed and single-analyte assays) as a reliable tool for detection and quantification of various analytes.


Assuntos
Detecção Precoce de Câncer , Citometria de Fluxo , Neoplasias/diagnóstico , Humanos , Microesferas
5.
Mater Sci Eng C Mater Biol Appl ; 38: 299-305, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24656382

RESUMO

Owing to excellent thermal and mechanical properties, graphene-based nanomaterials have recently attracted intensive attention for a wide range of applications, including biosensors, bioseparation, drug release vehicle, and tissue engineering. In this study, the effects of graphene oxide nanosheet (GONS) content on the linear (tensile strength and strain) and nonlinear (hyperelastic coefficients) mechanical properties of poly(acrylic acid) (PAA)/gelatin (Gel) hydrogels are evaluated. The GONS with different content (0.1, 0.3, and 0.5 wt.%) is added into the prepared PAA/Gel hydrogels and composite hydrogels are subjected to a series of tensile and stress relaxation tests. Hyperelastic strain energy density functions (SEDFs) are calibrated using uniaxial experimental data. The potential ability of different hyperelastic constitutive equations (Neo-Hookean, Yeoh, and Mooney-Rivlin) to define the nonlinear mechanical behavior of hydrogels is verified by finite element (FE) simulations. The results show that the tensile strength (71%) and elongation at break (26%) of composite hydrogels are significantly increased by the addition of GONS (0.3 wt.%). The experimental data is well fitted with those predicted by the FE models. The Yeoh material model accurately defines the nonlinear behavior of hydrogels which can be used for further biomechanical simulations of hydrogels. This finding might have implications not only for the improvement of the mechanical properties of composite hydrogels but also for the fabrication of polymeric substrate materials suitable for tissue engineering applications.


Assuntos
Resinas Acrílicas/química , Elasticidade , Gelatina/química , Grafite/química , Hidrogéis/química , Modelos Teóricos , Nanocompostos/química , Óxidos/química , Animais , Bovinos , Análise de Elementos Finitos , Reprodutibilidade dos Testes , Estresse Mecânico , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA