Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Odontology ; 108(2): 180-187, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31531771

RESUMO

Bacterial colonization in the oral cavity is critical for efficient action of probiotics. However, limited colonization rates have been reported in many clinical trials. The aim of this pilot clinical study was to evaluate the colonization efficiency of Streptococcus dentisani under different dosing schedules and pre-treatment conditions. Eleven adult volunteers enrolled in the study. A professional ultrasound cleaning was performed in quadrants 1 and 4. The probiotic was applied in all four quadrants at a total dose of 1010 CFUs, administered in a buccoadhesive gel for 5 min, either in a single dose (n = 5) or daily for a week (n = 6). Dental plaque and saliva samples were collected at baseline and after 14 and 28 days of first application. Amounts of S. dentisani and the cariogenic organism Streptococcus mutans were measured by qPCR and salivary pH was measured by reflectometry. There was a significant increase in S. dentisani cells at day 14 but not at day 28 under both dosing schedules. A non-significant higher colonization was found in the half-mouth with previous professional cleaning as compared to the intact half. There was a significant increase in salivary pH at day 14 (p = 0.024) and day 28 (p = 0.014), which was stronger in multi-dose patients, and a significant decrease in S. mutans at day 28 (p < 0.01). The results indicate that S. dentisani is transiently able to colonize the oral cavity and that it buffers oral pH, especially after multiple dosing. Future randomized, placebo-controlled clinical trials should evaluate its use to prevent tooth decay.


Assuntos
Cárie Dentária , Probióticos , Adulto , Humanos , Concentração de Íons de Hidrogênio , Projetos Piloto , Saliva , Streptococcus mutans
2.
BMC Psychiatry ; 17(1): 250, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28705252

RESUMO

BACKGROUND: A 12-week, double-blind, parallel, multi-center randomized controlled trial in 316 adult patients with major depressive disorder (MDD) was conducted to evaluate the effectiveness of pharmacogenetic (PGx) testing for drug therapy guidance. METHODS: Patients with a CGI-S ≥ 4 and requiring antidepressant medication de novo or changes in their medication regime were recruited at 18 Spanish public hospitals, genotyped with a commercial PGx panel (Neuropharmagen®), and randomized to PGx-guided treatment (n = 155) or treatment as usual (TAU, control group, n = 161), using a computer-generated random list that locked or unlocked psychiatrist access to the results of the PGx panel depending on group allocation. The primary endpoint was the proportion of patients achieving a sustained response (Patient Global Impression of Improvement, PGI-I ≤ 2) within the 12-week follow-up. Patients and interviewers collecting the PGI-I ratings were blinded to group allocation. Between-group differences were evaluated using χ2-test or t-test, as per data type. RESULTS: Two hundred eighty patients were available for analysis at the end of the 12-week follow-up (PGx n = 136, TAU n = 144). A difference in sustained response within the study period (primary outcome) was not observed (38.5% vs 34.4%, p = 0.4735; OR = 1.19 [95%CI 0.74-1.92]), but the PGx-guided treatment group had a higher responder rate compared to TAU at 12 weeks (47.8% vs 36.1%, p = 0.0476; OR = 1.62 [95%CI 1.00-2.61]), and this difference increased after removing subjects in the PGx-guided group when clinicians explicitly reported not to follow the test recommendations (51.3% vs 36.1%, p = 0.0135; OR = 1.86 [95%CI 1.13-3.05]). Effects were more consistent in patients with 1-3 failed drug trials. In subjects reporting side effects burden at baseline, odds of achieving a better tolerability (Frequency, Intensity and Burden of Side Effects Rating Burden subscore ≤2) were higher in the PGx-guided group than in controls at 6 weeks and maintained at 12 weeks (68.5% vs 51.4%, p = 0.0260; OR = 2.06 [95%CI 1.09-3.89]). CONCLUSIONS: PGx-guided treatment resulted in significant improvement of MDD patient's response at 12 weeks, dependent on the number of previously failed medication trials, but not on sustained response during the study period. Burden of side effects was also significantly reduced. TRIAL REGISTRATION: European Clinical Trials Database 2013-002228-18 , registration date September 16, 2013; ClinicalTrials.gov NCT02529462 , retrospectively registered: August 19, 2015.


Assuntos
Antidepressivos/farmacocinética , Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Testes Farmacogenômicos , Adulto , Antidepressivos/efeitos adversos , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
3.
J Biol Chem ; 290(27): 16772-85, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25971976

RESUMO

The human insulin-like growth factor 2 (IGF2) and insulin genes are located within the same genomic region. Although human genomic studies have demonstrated associations between diabetes and the insulin/IGF2 locus or the IGF2 mRNA-binding protein 2 (IGF2BP2), the role of IGF2 in diabetes pathogenesis is not fully understood. We previously described that transgenic mice overexpressing IGF2 specifically in ß-cells (Tg-IGF2) develop a pre-diabetic state. Here, we characterized the effects of IGF2 on ß-cell functionality. Overexpression of IGF2 led to ß-cell dedifferentiation and endoplasmic reticulum stress causing islet dysfunction in vivo. Both adenovirus-mediated overexpression of IGF2 and treatment of adult wild-type islets with recombinant IGF2 in vitro further confirmed the direct implication of IGF2 on ß-cell dysfunction. Treatment of Tg-IGF2 mice with subdiabetogenic doses of streptozotocin or crossing these mice with a transgenic model of islet lymphocytic infiltration promoted the development of overt diabetes, suggesting that IGF2 makes islets more susceptible to ß-cell damage and immune attack. These results indicate that increased local levels of IGF2 in pancreatic islets may predispose to the onset of diabetes. This study unravels an unprecedented role of IGF2 on ß-cells function.


Assuntos
Diabetes Mellitus/genética , Fator de Crescimento Insulin-Like II/genética , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Animais , Desdiferenciação Celular , Linhagem Celular Tumoral , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos
4.
Diabetes ; 55(12): 3246-55, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17130467

RESUMO

Type 1 diabetic patients are diagnosed when beta-cell destruction is almost complete. Reversal of type 1 diabetes will require beta-cell regeneration from islet cell precursors and prevention of recurring autoimmunity. IGF-I expression in beta-cells of streptozotocin (STZ)-treated transgenic mice regenerates the endocrine pancreas by increasing beta-cell replication and neogenesis. Here, we examined whether IGF-I also protects islets from autoimmune destruction. Expression of interferon (IFN)-beta in beta-cells of transgenic mice led to islet beta(2)-microglobulin and Fas hyperexpression and increased lymphocytic infiltration. Pancreatic islets showed high insulitis, and these mice developed overt diabetes when treated with very-low doses of STZ, which did not affect control mice. IGF-I expression in IFN-beta-expressing beta-cells of double-transgenic mice reduced beta(2)-microglobulin, blocked Fas expression, and counteracted islet infiltration. This was parallel to a decrease in beta-cell death by apoptosis in islets of STZ-treated IGF-I+IFN-beta-expressing mice. These mice were normoglycemic, normoinsulinemic, and showed normal glucose tolerance. They also presented similar pancreatic insulin content and beta-cell mass to healthy mice. Thus, local expression of IGF-I prevented islet infiltration and beta-cell death in mice with increased susceptibility to diabetes. These results indicate that pancreatic expression of IGF-I may regenerate and protect beta-cell mass in type 1 diabetes.


Assuntos
Diabetes Mellitus Experimental/imunologia , Fator de Crescimento Insulin-Like I/genética , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/imunologia , Regulação da Expressão Gênica , Células Secretoras de Insulina/patologia , Interferon beta/genética , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Infiltração de Neutrófilos
5.
Diabetes ; 61(11): 2851-61, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961079

RESUMO

Type 2 diabetes (T2D) results from insulin resistance and inadequate insulin secretion. Insulin resistance initially causes compensatory islet hyperplasia that progresses to islet disorganization and altered vascularization, inflammation, and, finally, decreased functional ß-cell mass and hyperglycemia. The precise mechanism(s) underlying ß-cell failure remain to be elucidated. In this study, we show that in insulin-resistant high-fat diet-fed mice, the enhanced islet vascularization and inflammation was parallel to an increased expression of vascular endothelial growth factor A (VEGF). To elucidate the role of VEGF in these processes, we have genetically engineered ß-cells to overexpress VEGF (in transgenic mice or after adeno-associated viral vector-mediated gene transfer). We found that sustained increases in ß-cell VEGF levels led to disorganized, hypervascularized, and fibrotic islets, progressive macrophage infiltration, and proinflammatory cytokine production, including tumor necrosis factor-α and interleukin-1ß. This resulted in impaired insulin secretion, decreased ß-cell mass, and hyperglycemia with age. These results indicate that sustained VEGF upregulation may participate in the initiation of a process leading to ß-cell failure and further suggest that compensatory islet hyperplasia and hypervascularization may contribute to progressive inflammation and ß-cell mass loss during T2D.


Assuntos
Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/metabolismo , Neovascularização Patológica/metabolismo , Estado Pré-Diabético/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Progressão da Doença , Fibrose , Técnicas de Transferência de Genes , Hiperplasia , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Estado Pré-Diabético/etiologia , Estado Pré-Diabético/imunologia , Estado Pré-Diabético/patologia , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA