Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(2): 72, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252323

RESUMO

Antimicrobial agents are used to treat microbial ailments, but increased use of antibiotics and exposure to infections in healthcare facilities and hospitals as well as the excessive and inappropriate use of antibiotics at the society level lead to the emergence of multidrug-resistant (MDR) bacteria. Antimicrobial resistance (AMR) is considered a public health concern and has rendered the treatment of different infections more challenging. The bacterial strains develop resistance against antimicrobial agents by limiting intracellular drug accumulation (increasing efflux or decreasing influx of antibiotics), modification and inactivation of drugs and its targets, enzymatic inhibition, and biofilm formation. However, the driving factors of AMR include the sociocultural and economic circumstances of a country, the use of falsified and substandard medicines, the use of antibiotics in farm animals, and food processing technologies. These factors make AMR one of the major menaces faced by mankind. In order to promote reciprocal learning, this article summarizes the current AMR situation in Pakistan and how it interacts with the health issues related to the COVID-19 pandemic. The COVID-19 pandemic aids in illuminating the possible long-term impacts of AMR, which are less immediate but not less severe since their measures and effects are equivalent. Impact on other sectors, including the health industry, the economy, and trade are also discussed. We conclude by summarizing the several approaches that could be used to address this issue.


Assuntos
Antibacterianos , COVID-19 , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Pandemias/prevenção & controle , Saúde Pública
2.
Biochem Genet ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816671

RESUMO

MicroRNAs (miRNAs) are short, endogenously encoded small RNAs, 18-26 nucleotides in length, which can posttranscriptionally regulate gene expression through translation inhibition or endonucleolytic cleavage. The muskmelon is one of the most widely cultivated fruits in the Cucurbitaceae family. Despite its significance, only 120 miRNAs from different families have been reported in muskmelon. In this study, we aimed to expand this knowledge base by predicting 40 new miRNAs in muskmelon using a spectrum of genomic-based tools. Precursor and mature sequences were obtained from microRNA registry database as reference and analyzed via the basic local alignment search tool (Blastn) for ESTs identification. After removing the non-coding sequences, the remaining candidate sequences were analyzed using MFOLD to generate secondary structures for the newly predicted miRNAs. Additionally, the predicted muskmelon miRNAs were validated using a set of five randomly chosen primers and RT-PCR. Through gene ontology (GO) analysis, we identified 89 targets associated with newly predicted muskmelon miRNAs. Transcription factor-coding genes play a crucial role in plant growth and development. Additionally, the miR4249 has been found to have the same targets in muskmelon that have been linked to cell signaling and transcription factors. The identified targets are integral for diverse biological processes including plant growth, development, metabolism, aging, disease resistance, and resistance to environmental stresses, such as salt, cold, and oxidative stress. As a result, the outcomes of this study demonstrate that this mechanism not only contributes to the production of a higher quality crop but also enhances overall production.

3.
Biochem Genet ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287779

RESUMO

Recombinant antibodies, a prominent class of recombinant proteins, are witnessing substantial growth in research and diagnostics. Recombinant antibodies are being produced employing diverse hosts ranging from highly complex eukaryotes, for instance, mammalian cell lines (and insects, fungi, yeast, etc.) to unicellular prokaryotic models like gram-positive and gram-negative bacteria. This review delves into these production methods, highlighting approaches like antibody phage display that employs bacteriophages for gene library creation. Recent studies emphasize monoclonal antibody generation through hybridoma technology, utilizing hybridoma cells from myeloma and B-lymphocytes. Transgenic plants and animals have emerged as sources for polyclonal and monoclonal antibodies, with transgenic animals preferred due to their human-like post-translational modifications and reduced immunogenicity risk. Chloroplast expression offers environmental safety by preventing transgene contamination in pollen. Diverse production technologies, such as stable cell pools and clonal cell lines, are available, followed by purification via techniques like affinity chromatography. The burgeoning applications of recombinant antibodies in medicine have led to their large-scale industrial production.

4.
BMC Plant Biol ; 23(1): 397, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37596537

RESUMO

Agricultural production is severely limited by an iron deficiency. Alkaline soils increase iron deficiency in rice crops, consequently leading to nutrient deficiencies in humans. Adding iron to rice enhances both its elemental composition and the nutritional value it offers humans through the food chain. The purpose of the current pot experiment was to investigate the impact of Fe treatment in alkaline (pH 7.5) and acidic (pH 5.5) soils to introduce iron-rich rice. Iron was applied to the plants in the soil in the form of an aqueous solution of FeSO4 with five different concentrations (100, 200, 300, 400, and 500 mM). The results obtained from the current study demonstrated a significant increase in Fe content in Oryza sativa with the application of iron in both alkaline and acidic pH soils. Specifically, Basmati-515, one of the rice cultivars tested, exhibited a notable 13% increase in iron total accumulation per plant and an 11% increase in root-to-shoot ratio in acidic soil. In contrast to Basmati-198, which demonstrated maximum response in alkaline soil, Basmati-515 exhibited notable increases in all parameters, including a 31% increase in dry weight, 16% increase in total chlorophyll content, an 11% increase in CAT (catalase) activity, 7% increase in APX (ascorbate peroxidase) activity, 26% increase in POD (peroxidase) activity, and a remarkable 92% increase in SOD (superoxide dismutase) in acidic soil. In alkaline soil, Basmati-198 exhibited respective decreases of 40% and 39% in MDA and H2O2 content, whereas Basmati-515 demonstrated a more significant decrease of 50% and 67% in MDA and H2O2 in acidic soil. These results emphasize the potential for targeted soil management strategies to improve iron nutrition and address iron deficiency in agricultural systems. By considering soil conditions, it is possible to enhance iron content and promote its availability in alkaline and acidic soils, ultimately contributing to improved crop nutrition and human health.


Assuntos
Deficiências de Ferro , Oryza , Humanos , Solo , Peróxido de Hidrogênio , Ferro
5.
Sci Total Environ ; 928: 172370, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604367

RESUMO

There is a cross-disciplinary link between air pollution, climate crisis, and sustainable lifestyle as they are the most complex struggles of the present century. This review takes an in-depth look at this relationship, considering carbon dioxide emissions primarily from the burning of fossil fuels as the main contributor to global warming and focusing on primary SLCPs such as methane and ground-level ozone. Such pollutants severely alter the climate through the generation of greenhouse gases. The discussion is extensive and includes best practices from conventional pollution control technologies to hi-tech alternatives, including electric vehicles, the use of renewables, and green decentralized solutions. It also addresses policy matters, such as imposing stricter emissions standards, setting stronger environmental regulations, and rethinking some economic measures. Besides that, new developments such as congestion charges, air ionization, solar-assisted cleaning systems, and photocatalytic materials are among the products discussed. These strategies differ in relation to the local conditions and therefore exhibit a varying effectiveness level, but they remain evident as a tool of pollution deterrence. This stresses the importance of holistic and inclusive approach in terms of engineering, policies, stakeholders, and ecological spheres to tackle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA