Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Am Chem Soc ; 145(39): 21419-21431, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37747924

RESUMO

Combining multiple species working in tandem for different hydrogen evolution reaction (HER) steps is an effective strategy to design HER electrocatalysts. Here, we engineered a hierarchical electrode for the HER composed of amorphous-TiO2/Cu nanorods (NRs) decorated with cost-effective Ru-Cu nanoheterostructures (Ru mass loading = 52 µg/cm2). Such an electrode exhibits a stable, over 250 h, low overpotential of 74 mV at -200 mA/cm2 for the HER in 1 M NaOH. The high activity of the electrode is attributed, by structural analysis, operando X-ray absorption spectroscopy, and first-principles simulations, to synergistic functionalities: (1) mechanically robust, vertically aligned Cu NRs with high electrical conductivity and porosity provide fast charge and gas transfer channels; (2) the Ru electronic structure, regulated by the size of Cu clusters at the surface, facilitates the water dissociation (Volmer step); (3) the Cu clusters grown atop Ru exhibit a close-to-zero Gibbs free energy of the hydrogen adsorption, promoting fast Heyrovsky/Tafel steps. An alkaline electrolyzer (AEL) coupling the proposed cathode and a stainless-steel anode can stably operate in both continuous (1 A/cm2 for over 200 h) and intermittent modes (accelerated stress tests). A techno-economic analysis predicts the minimal overall hydrogen production cost of US$2.12/kg in a 1 MW AEL plant of 30 year lifetime based on our AEL single cell, hitting the worldwide targets (US$2-2.5/kgH2).

2.
Angew Chem Int Ed Engl ; 61(22): e202201747, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35226780

RESUMO

Here we present a colloidal approach to synthesize bismuth chalcohalide nanocrystals (BiEX NCs, in which E=S, Se and X=Cl, Br, I). Our method yields orthorhombic elongated BiEX NCs, with BiSCl crystallizing in a previously unknown polymorph. The BiEX NCs display a composition-dependent band gap spanning the visible spectral range and absorption coefficients exceeding 105  cm-1 . The BiEX NCs show chemical stability at standard laboratory conditions and form colloidal inks in different solvents. These features enable the solution processing of the NCs into robust solid films yielding stable photoelectrochemical current densities under solar-simulated irradiation. Overall, our versatile synthetic protocol may prove valuable in accessing colloidal metal chalcohalide nanomaterials at large and contributes to establish metal chalcohalides as a promising complement to metal chalcogenides and halides for applied nanotechnology.

3.
Angew Chem Int Ed Engl ; 58(18): 6017-6021, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30866112

RESUMO

The mechanism of silver-oxygen and silver-sulfur reactions is revealed by means of molecular dynamics simulations, performed with reactive force fields purposely built and extensively tested against quantum-chemical results. Different reaction mechanisms and rates for Ag-O and Ag-S emerge. This study solves the long-lasting question why silver exposed to the environment is strongly vulnerable to sulfur corrosion (tarnishing) but hardly reacts with O2 , despite the thermodynamic prediction that both oxide and sulfide should form. The reliability of the simulation results is confirmed by the agreement with a multitude of experimental results from the literature.

4.
Phys Chem Chem Phys ; 20(6): 4277-4286, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29364993

RESUMO

Ag and Sn are the major components of solder alloys adopted to assemble printed circuit boards. The qualities that make them the alloys of choice for the modern electronic industry are related to their physical and chemical properties. For corrosion resistance and solderability, surface properties are particularly important. Yet, atomic-level information about the surfaces of these alloys is not known. Here we fill this gap by presenting an extensive ab initio investigation of composition, energetics, structure and reactivity of Ag-Sn alloy surfaces. The structure and stability of various surfaces is evaluated, and the main factors determining the energetics of surface formation are uncovered. Oxygen and sulphur chemisorptions are studied and discussed in the framework of corrosion tendency, an important issue for printed circuit boards. Adsorption energy trends are rationalized based on the analysis of structural and electronic features.

5.
Chemistry ; 19(10): 3490-503, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23355355

RESUMO

The accurate, experimental charge density distribution, ρ(r), of the potent antimalarial drug dihydroartemisinin (DHA) has been derived for the first time from single-crystal X-ray diffraction data at T=100(2) K. Gas-phase and solid-state DFT simulations have also been performed to provide a firm basis of comparison with experimental results. The quantum theory of atoms in molecules (QTAIM) has been employed to analyse the ρ(r) scalar field, with the aim of classifying and quantifying the key real-space elements responsible for the known pharmacophoric features of DHA. From the conformational perspective, the bicyclo[3.2.2]nonane system fixes the three-dimensional arrangement of the 1,2,4-trioxane bearing the active O-O redox centre. This is the most nucleophilic function in DHA and acts as an important CH⋅⋅⋅O acceptor. On the contrary, the rest of the molecular backbone is almost neutral, in accordance with the lipophilic character of the compound. Another remarkable feature is the C-O bond length alternation along the O-C-O-C polyether chain, due to correlations between pairs of adjacent C-O bonds. These bonding features have been related with possible reactivity routes of the α- and ß-DHA epimers, namely 1) the base-catalysed hemiacetal breakdown and 2) the peroxide reduction. As a general conclusion, the base-driven proton transfer has significant non-local effects on the whole polyether chain, whereas DHA reduction is thermodynamically favourable and invariably leads to a significant weakening (or even breaking) of the O-O bond. The influence of the hemiacetal stereochemistry on the electronic properties of the system has also been considered. Such findings are discussed in the context of the known chemical reactivity of this class of important antimalarial drugs.


Assuntos
Antimaláricos/química , Artemisininas/química , Antimaláricos/farmacologia , Artemisininas/farmacologia , Modelos Teóricos , Conformação Molecular , Estrutura Molecular , Difração de Raios X
6.
Adv Mater ; 35(38): e2303621, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37243572

RESUMO

InAs-based nanocrystals can enable restriction of hazardous substances (RoHS) compliant optoelectronic devices, but their photoluminescence efficiency needs improvement. We report an optimized synthesis of InAs@ZnSe core@shell nanocrystals allowing to tune the ZnSe shell thickness up to seven mono-layers (ML) and to boost the emission, reaching a quantum yield of ≈70% at ≈900 nm. It is demonstrated that a high quantum yield can be attained when the shell thickness is at least ≈3ML. Notably, the photoluminescence lifetimeshows only a minor variation as a function of shell thickness, whereas the Auger recombination time (a limiting aspect in technological applications when fast) slows down from 11 to 38 ps when increasing the shell thickness from 1.5 to 7MLs. Chemical and structural analyses evidence that InAs@ZnSe nanocrystals do not exhibit any strain at the core-shell interface, likely due to the formation of an InZnSe interlayer. This is supported by atomistic modeling, which indicates the interlayer as being composed of In, Zn, Se and cation vacancies, alike to the In2 ZnSe4 crystal structure. The simulations reveal an electronic structure consistent with that of type-I heterostructures, in which localized trap states can be passivated by a thick shell (>3ML) and excitons are confined in the core.

7.
Nat Commun ; 14(1): 4680, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542064

RESUMO

Alkaline electrolyzers generally produce hydrogen at current densities below 0.5 A/cm2. Here, we design a cost-effective and robust cathode, consisting of electrodeposited Ru nanoparticles (mass loading ~ 53 µg/cm2) on vertically oriented Cu nanoplatelet arrays grown on metallic meshes. Such cathode is coupled with an anode based on stacked stainless steel meshes, which outperform NiFe hydroxide catalysts. Our electrolyzers exhibit current densities as high as 1 A/cm2 at 1.69 V and 3.6 A/cm2 at 2 V, reaching the performances of proton-exchange membrane electrolyzers. Also, our electrolyzers stably operate in continuous (1 A/cm2 for over 300 h) and intermittent modes. A total production cost of US$2.09/kgH2 is foreseen for a 1 MW plant (30-year lifetime) based on the proposed electrode technology, meeting the worldwide targets (US$2-2.5/kgH2). Hence, the use of a small amount of Ru in cathodes (~0.04 gRu per kW) is a promising strategy to solve the dichotomy between the capital and operational expenditures of conventional alkaline electrolyzers for high-throughput operation, while facing the scarcity issues of Pt-group metals.

8.
Chemistry ; 18(48): 15523-36, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23038653

RESUMO

Non-covalent interactions (NCI) define the rules underlying crystallisation, self-assembly and drug-receptor docking processes. A novel NCI descriptor, based on the reduced electron density gradient (RDG), that enables easy visualisation of the zones of the electron density (ED) involved in either the supposedly attractive (dispersive, hydrogen bonding) or allegedly repulsive (steric) intermolecular interactions, was recently developed by Johnson et al. Here, it is applied for the first time to EDs derived from single-crystal X-ray diffraction data. A computer code handling both experimental and ab initio EDs in the RDG-NCI perspective was purposely written. Three cases spanning a wide range of NCI classes were analysed: 1) benzene, as the prototype of stacking and weak CH···π interactions; 2) austdiol, a heavily functionalised fungal metabolite with a complex hydrogen-bonding network; 3) two polymorphs of the heteroatom-rich anti-ulcer drug famotidine, with van der Waals and hydrogen-bond contacts between N- and S-containing groups. Even when applied to experimental EDs, the RDG index is a valuable NCI descriptor that can highlight their different nature and strength and provide results of comparable quality to ab initio approaches. Combining the RDG-NCI study with Bader's ED approach was a key step forward, as the RDG index can depict inherently delocalised interactions in terms of extended and flat RDG isosurfaces, in contrast to the bond path analysis, which is often bounded to a too localised and possibly discontinuous (yes/no) description. Conversely, the topological tool can provide quantitative insight into the simple, qualitative NCI picture offered by the RDG index. Hopefully, this study may pave the way to a deeper analysis of weak interactions in proteins using structural and ED information from experiment.


Assuntos
Aldeídos/química , Benzopiranos/química , Elétrons , Modelos Químicos , Cristalografia por Raios X , Ligação de Hidrogênio , Conformação Molecular , Estrutura Molecular
9.
Adv Mater ; 33(13): e2008004, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33644923

RESUMO

The unique combination of organic and inorganic layers in 2D layered perovskites offers promise for the design of a variety of materials for mechatronics, flexoelectrics, energy conversion, and lighting. However, the potential tailoring of their properties through the organic building blocks is not yet well understood. Here, different classes of organoammonium molecules are exploited to engineer the optical emission and robustness of a new set of Ruddlesden-Popper metal-halide layered perovskites. It is shown that the type of molecule regulates the number of hydrogen bonds that it forms with the edge-sharing [PbBr6 ]4- octahedra layers, leading to strong differences in the material emission and tunability of the color coordinates, from deep-blue to pure-white. Also, the emission intensity strongly depends on the length of the molecules, thereby providing an additional parameter to optimize their emission efficiency. The combined experimental and computational study provides a detailed understanding of the impact of lattice distortions, compositional defects, and the anisotropic crystal structure on the emission of such layered materials. It is foreseen that this rational design can be extended to other types of organic linkers, providing a yet unexplored path to tailor the optical and mechanical properties of these materials and to unlock new functionalities.

10.
J Phys Chem Lett ; 11(6): 2127-2132, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32079398

RESUMO

We present a computational study of the electronic structure and lattice dynamics of IrTe2 that sheds light on the debated mechanism of the temperature-induced phase transitions of this material. At ambient temperature, IrTe2 adopts a hexagonal crystal structure typical of metal chalcogenides. Upon cooling, some Ir-Ir distances shorten, thus inducing lattice modulations. We demonstrate that this is due to the formation of multicenter bonds involving both Ir and Te atoms. We show how the formation of these bonds is energetically favorable but lowers the vibrational entropy; therefore, they are destabilized by temperature. The obtained model is exploited to rationalize the effect of Se doping and other experimental results from the literature.

11.
Nat Chem ; 9(5): 440-445, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28430195

RESUMO

Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes this material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na8 cubes. We also predict the existence of Na2HeO with a similar structure at pressures above 15 GPa.

12.
Sci Rep ; 6: 32486, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27580525

RESUMO

The chemistry of the elements is heavily altered by high pressure, with stabilization of many new and often unexpected compounds, the emergence of which can profoundly change models of planetary interiors, where high pressure reigns. The C-H-O system is one of the most important planet-forming systems, but its high-pressure chemistry is not well known. Here, using state-of-the-art variable-composition evolutionary searches combined with quantum-mechanical calculations, we explore the C-H-O system at pressures up to 400 GPa. Besides uncovering new stable polymorphs of high-pressure elements and known molecules, we predicted the formation of new compounds. A 2CH4:3H2 inclusion compound forms at low pressure and remains stable up to 215 GPa. Carbonic acid (H2CO3), highly unstable at ambient conditions, was predicted to form exothermically at mild pressure (about 1 GPa). As pressure rises, it polymerizes and, above 314 GPa, reacts with water to form orthocarbonic acid (H4CO4). This unexpected high-pressure chemistry is rationalized by analyzing charge density and electron localization function distributions, and implications for general chemistry and planetary science are also discussed.

13.
Artigo em Inglês | MEDLINE | ID: mdl-27048720

RESUMO

The Source Function (SF), introduced in 1998 by Richard Bader and Carlo Gatti, is succinctly reviewed and a number of paradigmatic applications to in vacuo and crystal systems are illustrated to exemplify how the SF may be used to discuss chemical bonding in both conventional and highly challenging cases. The SF enables the electron density to be seen at a point determined by source contributions from the atoms or a group of atoms of a system, and it is therefore well linked to the chemist's awareness that any local property and chemical behaviour is to some degree influenced by all the remaining parts of a system. The key and captivating feature of the SF is that its evaluation requires only knowledge of the electron density (ED) of a system, thereby enabling a comparison of ab initio and X-ray diffraction derived electron density properties on a common and rigorous basis. The capability of the SF to detect electron-delocalization effects and to quantify their degree of transferability is systematically explored in this paper through the analysis and comparison of experimentally X-ray derived Source Function patterns in benzene, naphthalene and (±)-8'-benzhydrylideneamino-1,1'-binaphthyl-2-ol (BAB) molecular crystals. It is shown that the SF tool recovers the characteristic SF percentage patterns caused by π-electron conjugation in the first two paradigmatic aromatic molecules in almost perfect quantitative agreement with those obtained from ab initio periodic calculations. Moreover, the effect of chemical substitution on the degree of transferability of such patterns to the benzene- and naphthalene-like moieties of BAB is neatly shown and quantified by the observed systematic deviations, relative to benzene and naphthalene, of only those SF contributions from the substituted C atoms. Finally, the capability of the SF to reveal electron-delocalization effects is challenged by using a promolecule density, rather than the proper quantum mechanical density, to determine the changes in SF patterns along the cyclohexene, 1,3-cyclohexadiene and benzene molecule series. It is shown that, differently from the proper quantum density, the promolecular density is unable to reproduce the SF trends anticipated by the increase of electron delocalization along the series, therefore ruling out the geometrical effect as being the only cause for the observed SF patterns changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA