Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Clin Exp Immunol ; 213(3): 339-356, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37070830

RESUMO

Previous work has shown that Secretory-IgA (SIgA) binding to the intestinal microbiota is variable and may regulate host inflammatory bowel responses. Nevertheless, the impact of the SIgA functional binding to the microbiota remains largely unknown in preterm infants whose immature epithelial barriers make them particularly susceptible to inflammation. Here, we investigated SIgA binding to intestinal microbiota isolated from stools of preterm infants <33 weeks gestation with various levels of intestinal permeability. We found that SIgA binding to intestinal microbiota attenuates inflammatory reactions in preterm infants. We also observed a significant correlation between SIgA affinity to the microbiota and the infant's intestinal barrier maturation. Still, SIgA affinity was not associated with developing host defenses, such as the production of mucus and inflammatory calprotectin protein, but it depended on the microbiota shifts as the intestinal barrier matures. In conclusion, we reported an association between the SIgA functional binding to the microbiota and the maturity of the preterm infant's intestinal barrier, indicating that the pattern of SIgA coating is altered as the intestinal barrier matures.

2.
Cell Immunol ; 378: 104572, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35772315

RESUMO

We have previously demonstrated that Mucosal-Associated Invariant T (MAIT) cells secrete multiple cytokines after exposure to Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever in humans. However, whether cytokine secreting MAIT cells can enhance or attenuate the clinical severity of bacterial infections remain debatable. This study characterizes human MAIT cell functions in subjects participating in a wild-type S. Typhi human challenge model. Here, we found that MAIT cells exhibit distinct functional signatures associated with protection against typhoid fever. We also observed that the cytokine patterns of MAIT cell responses, rather than the average number of cytokines expressed, are more predictive of typhoid fever outcomes. These results might enable us to objectively, based on functional parameters, identify cytokine patterns that may serve as predictive biomarkers during natural infection and vaccination.


Assuntos
Células T Invariantes Associadas à Mucosa , Febre Tifoide , Citocinas , Humanos , Salmonella typhi/fisiologia , Febre Tifoide/microbiologia , Febre Tifoide/prevenção & controle , Vacinação
3.
Infect Immun ; 86(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30249748

RESUMO

A notable proportion of Salmonella-associated gastroenteritis in the United States is attributed to Salmonella enterica serovar Typhimurium. We have previously shown that live-attenuated S Typhimurium vaccine candidate CVD 1921 (I77 ΔguaBA ΔclpP) was safe and immunogenic in rhesus macaques but was shed for an undesirably long time postimmunization. In mice, occasional mortality postvaccination was also noted (approximately 1 in every 15 mice). Here we describe a further attenuated vaccine candidate strain harboring deletions in two additional genes, htrA and pipA We determined that S Typhimurium requires pipA to elicit fluid accumulation in a rabbit ileal loop model of gastroenteritis, as an S Typhimurium ΔpipA mutant induced significantly less fluid accumulation in rabbit loops than the wild-type strain. New vaccine strain CVD 1926 (I77 ΔguaBA ΔclpP ΔpipA ΔhtrA) was assessed for inflammatory potential in an organoid model of human intestinal mucosa, where it induced less inflammatory cytokine production than organoids exposed to the precursor vaccine, CVD 1921. To assess vaccine safety and efficacy, mice were given three doses of CVD 1926 (109 CFU/dose) by oral gavage, and at 1 or 3 months postimmunization, mice were challenged with 700 or 100 LD50 (50% lethal doses), respectively, of wild-type strain I77. CVD 1926 was well tolerated and exhibited 47% vaccine efficacy following challenge with a high inoculum and 60% efficacy after challenge with a low inoculum of virulent S Typhimurium. CVD 1926 is less reactogenic yet equally as immunogenic and protective as previous iterations in a mouse model.


Assuntos
Imunogenicidade da Vacina , Inflamação/imunologia , Mucosa Intestinal/imunologia , Infecções por Salmonella/prevenção & controle , Vacinas contra Salmonella/imunologia , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Deleção de Genes , Humanos , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Organoides/imunologia , Organoides/microbiologia , Coelhos , Infecções por Salmonella/imunologia , Vacinas contra Salmonella/efeitos adversos , Salmonella typhimurium/imunologia , Vacinas Atenuadas/imunologia
4.
Front Immunol ; 15: 1334762, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533492

RESUMO

Salmonella enterica serovar Typhi (S. Typhi), a human-restricted pathogen, invades the host through the gut to cause typhoid fever. Recent calculations of the typhoid fever burden estimated that more than 10 million new typhoid fever cases occur in low and middle-income countries, resulting in 65,400-187,700 deaths yearly. Interestingly, if not antibiotic-treated, upon the resolution of acute disease, 1%-5% of patients become asymptomatic chronic carriers. Chronically infected hosts are not only critical reservoirs of infection that transmit the disease to naive individuals but are also predisposed to developing gallbladder carcinoma. Nevertheless, the molecular mechanisms involved in the early interactions between gallbladder epithelial cells and S. Typhi remain largely unknown. Based on our previous studies showing that closely related S. Typhi strains elicit distinct innate immune responses, we hypothesized that host molecular pathways activated by S. Typhi strains derived from acutely and chronically infected patients would differ. To test this hypothesis, we used a novel human organoid-derived polarized gallbladder monolayer model, and S. Typhi strains derived from acutely and chronically infected patients. We found that S. Typhi strains derived from acutely and chronically infected patients differentially regulate host mitogen-activated protein kinase (MAPK) and S6 transcription factors. These variations might be attributed to differential cytokine signaling, predominantly via TNF-α and IL-6 production and appear to be influenced by the duration the isolate was subjected to selective pressures in the gallbladder. These findings represent a significant leap in understanding the complexities behind chronic S. Typhi infections in the gallbladder and may uncover potential intervention targets.


Assuntos
Salmonella typhi , Febre Tifoide , Humanos , Vesícula Biliar/patologia , Infecção Persistente , Imunidade
5.
Front Nutr ; 10: 1286138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283907

RESUMO

Pectins, a class of dietary fibers abundant in vegetables and fruits, have drawn considerable interest due to their potential anti-inflammatory properties. Numerous studies have indicated that incorporating pectins into infant formula could be a safe strategy for alleviating infant regurgitation and diarrhea. Moreover, pectins have been shown to modulate cytokine production, macrophage activity, and NF-kB expression, all contributing to their anti-inflammatory effects. Despite this promising evidence, the exact mechanisms through which pectins exert these functions and how their structural characteristics influence these processes remain largely unexplored. This knowledge is particularly significant in the context of gut inflammation in developing preterm babies, a critical aspect of necrotizing enterocolitis (NEC), and in children and adults dealing with inflammatory bowel disease (IBD). Our mini review aims to provide an up-to-date compilation of relevant research on the effects of pectin on gut immune responses, specifically focusing on preterms and newborns. By shedding light on the underlying mechanisms and implications of pectin-mediated anti-inflammatory properties, this review seeks to advance our knowledge in this area and pave the way for future research and potential therapeutic interventions.

6.
Front Immunol ; 12: 728685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659215

RESUMO

Mucosal-associated invariant T (MAIT) cells are an innate-like population of T cells that display a TCR Vα7.2+ CD161+ phenotype and are restricted by the nonclassical MHC-related molecule 1 (MR1). Although B cells control MAIT cell development and function, little is known about the mechanisms underlying their interaction(s). Here, we report, for the first time, that during Salmonella enterica serovar Typhi (S. Typhi) infection, HLA-G expression on B cells downregulates IFN-γ production by MAIT cells. In contrast, blocking HLA-G expression on S. Typhi-infected B cells increases IFN-γ production by MAIT cells. After interacting with MAIT cells, kinetic studies show that B cells upregulate HLA-G expression and downregulate the inhibitory HLA-G receptor CD85j on MAIT cells resulting in their loss. These results provide a new role for HLA-G as a negative feedback loop by which B cells control MAIT cell responses to antigens.


Assuntos
Antígenos CD/metabolismo , Linfócitos B/metabolismo , Antígenos HLA-G/metabolismo , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Células T Invariantes Associadas à Mucosa/metabolismo , Salmonella typhi/patogenicidade , Febre Tifoide/metabolismo , Adulto , Antígenos CD/genética , Linfócitos B/imunologia , Linfócitos B/microbiologia , Células Cultivadas , Técnicas de Cocultura , Feminino , Interações Hospedeiro-Patógeno , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Cinética , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/genética , Masculino , Pessoa de Meia-Idade , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/microbiologia , Fenótipo , Salmonella typhi/imunologia , Transdução de Sinais , Febre Tifoide/genética , Febre Tifoide/imunologia , Febre Tifoide/microbiologia , Adulto Jovem
7.
Clin Transl Immunology ; 10(1): e1239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505681

RESUMO

OBJECTIVES: Francisella tularensis, the causative agent of tularaemia, is an exceptionally infectious bacterium, potentially fatal for humans if left untreated and with the potential to be developed as a bioweapon. Both natural infection and live-attenuated vaccine strain (LVS) confer good protection against tularaemia. LVS vaccination is traditionally administered by scarification, and the formation of a cutaneous reaction or take at the vaccination site is recognised as a clinical correlate of protection. Although previous studies have suggested that high antibody titres following vaccination might serve as a useful surrogate marker, the immunological correlates of protection remain unknown. METHODS: We investigated the host T-cell-mediated immune (T-CMI) responses elicited following immunisation with LVS vaccine formulated by the DynPort Vaccine Company (DVC-LVS) or the United States Army Medical Research Institute of Infectious Diseases (USAMRIID-LVS). We compared T-CMI responses prompted by these vaccines and correlated them with take size. RESULTS: We found that both LVS vaccines elicited similar T-CMI responses. Interestingly, take size associated with the T cells' ability to proliferate, secrete IFN-γ and mobilise degranulation, suggesting that these responses play an essential role in tularaemia protection. CONCLUSIONS: These results renew the appreciation for vaccination through the scarification as a prime route of inoculation to target pathogens driving specific T-CMI responses and provide further evidence that T-CMI plays a role in protection from tularaemia.

8.
Sci Rep ; 10(1): 13581, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788681

RESUMO

Salmonella enterica serovar Typhi (S. Typhi) causes substantial morbidity and mortality worldwide, particularly among young children. Humans develop an array of mucosal immune responses following S. Typhi infection. Whereas the cellular mechanisms involved in S. Typhi infection have been intensively studied, very little is known about the early chromatin modifications occurring in the human gut microenvironment that influence downstream immune responses. To address this gap in knowledge, cells isolated from human terminal ileum exposed ex vivo to the wild-type S. Typhi strain were stained with a 33-metal-labeled antibody panel for mass cytometry analyses of the early chromatin modifications modulated by S. Typhi. We measured the cellular levels of 6 classes of histone modifications, and 1 histone variant in 11 major cell subsets (i.e., B, CD3 + T, CD4 + T, CD8 + T, NK, TCR-γδ, Mucosal associated invariant (MAIT), and NKT cells as well as monocytes, macrophages, and epithelial cells). We found that arginine methylation might regulate the early-differentiation of effector-memory CD4+ T-cells following exposure to S. Typhi. We also found S. Typhi-induced post-translational modifications in histone methylation and acetylation associated with epithelial cells, NKT, MAIT, TCR-γδ, Monocytes, and CD8 + T-cells that are related to both gene activation and silencing.


Assuntos
Epigênese Genética/imunologia , Íleo/imunologia , Imunidade nas Mucosas/imunologia , Mucosa/imunologia , Salmonella typhi/imunologia , Febre Tifoide/imunologia , Acetilação , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/microbiologia , Epigênese Genética/genética , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Microbioma Gastrointestinal/imunologia , Código das Histonas , Humanos , Íleo/citologia , Íleo/microbiologia , Imunidade nas Mucosas/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Metilação , Mucosa/metabolismo , Salmonella typhi/fisiologia , Febre Tifoide/microbiologia
9.
Vaccine ; 38(2): 258-270, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31629569

RESUMO

It is widely accepted that CD4+ and CD8+ T-cells play a significant role in protection against Salmonella enterica serovar Typhi (S. Typhi), the causative agent of the typhoid fever. However, the antigen specificity of these T-cells remains largely unknown. Previously, we demonstrated the feasibility of using a recombinant Escherichia coli (E. coli) expression system to uncover the antigen specificity of CD4+ and CD8+ T cells. Here, we expanded these studies to include the evaluation of 12 additional S. Typhi proteins: 4 outer membrane proteins (OmpH, OmpL, OmpR, OmpX), 3 Vi-polysaccharide biosynthesis proteins (TviA, TviB, TviE), 3 cold shock proteins (CspA, CspB, CspC), and 2 conserved hypothetical proteins (Chp 1 and Chp2), all selected based on the bioinformatic analyses of the content of putative T-cell epitopes. CD4+ and CD8+ T cells from 15 adult volunteers, obtained before and 42 days after immunization with oral live attenuated Ty21a vaccine, were assessed for their functionality (i.e., production of cytokines and cytotoxic expression markers in response to stimulation with selected antigens) as measured by flow cytometry. Although volunteers differed on their T-cell antigen specificity, we observed T-cell immune responses against all S. Typhi proteins evaluated. These responses included 9 proteins, OmpH, OmpR, TviA, TviE, CspA, CspB, CspC, Chp 1 and Chp 2, which have not been previously reported to elicit T-cell responses. Interestingly, we also observed that, regardless of the protein, the functional patterns of the memory T-cells were different between CD4+ and CD8+ T cells. In sum, these studies demonstrated the feasibility of using bioinformatic analysis and the E. coli expressing system described here to uncover novel immunogenic T-cell proteins that could serve as potential targets for the production of protein-based vaccines.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Polissacarídeos Bacterianos/administração & dosagem , Salmonella typhi/imunologia , Vacinas Tíficas-Paratíficas/administração & dosagem , Adulto , Escherichia coli/imunologia , Humanos , Pessoa de Meia-Idade , Polissacarídeos Bacterianos/imunologia , Febre Tifoide/prevenção & controle , Vacinas Tíficas-Paratíficas/imunologia , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Adulto Jovem
10.
PLoS Negl Trop Dis ; 13(8): e0007650, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31412039

RESUMO

Enteric fevers, caused by the Salmonella enterica serovars Typhi (ST), Paratyphi A (PA) and Paratyphi B (PB), are life-threatening illnesses exhibiting very similar clinical symptoms but with distinct epidemiologies, geographical distributions and susceptibilities to antimicrobial treatment. Nevertheless, the mechanisms by which the host recognizes pathogens with high levels of homology, such as these bacterial serovars, remain poorly understood. Using a three-dimensional organotypic model of the human intestinal mucosa and PA, PB, and ST, we observed significant differences in the secretion patterns of pro-inflammatory cytokines and chemokines elicited by these serovars. These cytokines/chemokines were likely to be co-regulated and influenced the function of epithelial cells, such as the production of IL-8. We also found differing levels of polymorphonuclear leukocyte (PMN) migration among various infection conditions that either included or excluded lymphocytes and macrophages (Mϕ), strongly suggesting feedback mechanisms among these cells. Blocking experiments showed that IL-1ß, IL-6, IL-8, TNF-α and CCL3 cytokines were involved in the differential regulation of migration patterns. We conclude that the crosstalk among the lymphocytes, Mϕ, PMN and epithelial cells is cytokine/chemokine-dependent and bacterial-serotype specific, and plays a pivotal role in orchestrating the functional efficiency of the innate cells and migratory characteristics of the leukocytes.


Assuntos
Comunicação Celular , Leucócitos/imunologia , Salmonella paratyphi A/imunologia , Salmonella paratyphi B/imunologia , Salmonella typhi/imunologia , Febre Tifoide/imunologia , Movimento Celular , Citocinas/análise , Células Epiteliais/imunologia , Humanos , Mucosa Intestinal/imunologia , Linfócitos/imunologia , Macrófagos/imunologia , Modelos Teóricos , Técnicas de Cultura de Órgãos
11.
Front Immunol ; 9: 2543, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30443257

RESUMO

Although immunity induced by typhoid fever is moderated and short-lived, typhoid vaccination with the attenuated Ty21a oral vaccine generates long-lasting protection rates reaching up to 92%. Thus, there are important differences on how wild-type Salmonella and typhoid vaccine strains stimulate host immunity. We hypothesize that vaccine strains with different mutations might affect gut inflammation and intestinal permeability by different mechanisms. To test this hypothesis, we used an in vitro organotypic model of the human intestinal mucosa composed of human intestinal epithelial cells, lymphocytes/monocytes, endothelial cells, and fibroblasts. We also used six Salmonella enterica serovar Typhi (S. Typhi) strains: the licensed Ty21a oral vaccine, four typhoid vaccine candidates (i.e., CVD 908, CVD 909, CVD 910, and CVD 915) and the wild-type Ty2 strain. We found that genetically engineered S. Typhi vaccine strains elicit differential host changes not only in the intestinal permeability and secretion of inflammatory cytokines, but also in the phenotype and activation pathways of innate cells. These changes were distinct from those elicited by the parent wild-type S. Typhi and depended on the genetic manipulation. In sum, these results emphasize the importance of carefully selecting specific manipulations of the Salmonella genome in the development of typhoid vaccines.


Assuntos
Mucosa Intestinal/imunologia , Polissacarídeos Bacterianos/imunologia , Salmonella typhi/genética , Febre Tifoide/imunologia , Vacinas Tíficas-Paratíficas/imunologia , Anticorpos Antibacterianos/sangue , Células Cultivadas , Citocinas/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Técnicas de Cultura de Órgãos , Junções Íntimas/metabolismo , Vacinação , Vacinas Atenuadas
12.
Cell Mol Gastroenterol Hepatol ; 5(4): 611-625, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930981

RESUMO

BACKGROUND & AIMS: Clostridium difficile toxin A (TcdA) and C difficile toxin toxin B (TcdB), the major virulence factors of the bacterium, cause intestinal tissue damage and inflammation. Although the 2 toxins are homologous and share a similar domain structure, TcdA is generally more inflammatory whereas TcdB is more cytotoxic. The functional domain of the toxins that govern the proinflammatory activities of the 2 toxins is unknown. METHODS: Here, we investigated toxin domain functions that regulate the proinflammatory activity of C difficile toxins. By using a mouse ilea loop model, human tissues, and immune cells, we examined the inflammatory responses to a series of chimeric toxins or toxin mutants deficient in specific domain functions. RESULTS: Blocking autoprocessing of TcdB by mutagenesis or chemical inhibition, while reducing cytotoxicity of the toxin, significantly enhanced its proinflammatory activities in the animal model. Furthermore, a noncleavable mutant TcdB was significantly more potent than the wild-type toxin in the induction of proinflammatory cytokines in human colonic tissues and immune cells. CONCLUSIONS: In this study, we identified a novel mechanism of regulating the biological activities of C difficile toxins in that cysteine protease-mediated autoprocessing regulates toxins' proinflammatory activities. Our findings provide new insight into the pathogenesis of C difficile infection and the design of therapeutics against the disease.

13.
Trends Microbiol ; 14(12): 536-42, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17055276

RESUMO

One of the hallmarks of successful vaccination is the induction of strong and persistent memory T cell responses, a process that involves striking changes in the number and functional properties of T cells. Many questions pertaining to this complex, multifaceted process remain unanswered. Some of the key issues and challenges to optimize memory T cell responses and foster vaccine development include the optimization of effector T cell burst sizes, the use of adjuvants, cytokines and co-stimulatory molecules, epitope enhancement and the standardization of techniques to detect specific T cells. Age also has an impact on vaccine design because of the physiological changes in cell-mediated immunity that occur throughout life.


Assuntos
Imunidade Celular , Linfócitos T/imunologia , Vacinas/imunologia , Envelhecimento/imunologia , Desenho de Fármacos , Humanos
15.
PLoS Negl Trop Dis ; 11(9): e0005912, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28873442

RESUMO

Salmonella enterica serovar Typhi (S. Typhi), the causative agent of the typhoid fever, is a pathogen of great public health importance. Typhoid vaccines have the potential to be cost-effective measures towards combating this disease, yet the antigens triggering host protective immune responses are largely unknown. Given the key role of cellular-mediated immunity in S. Typhi protection, it is crucial to identify S. Typhi proteins involved in T-cell responses. Here, cells from individuals immunized with Ty21a typhoid vaccine were collected before and after immunization and used as effectors. We also used an innovative antigen expressing system based on the infection of B-cells with recombinant Escherichia coli (E. coli) expressing one of four S. Typhi gene products (i.e., SifA, OmpC, FliC, GroEL) as targets. Using flow cytometry, we found that the pattern of response to specific S. Typhi proteins was variable. Some individuals responded to all four proteins while others responded to only one or two proteins. We next evaluated whether T-cells responding to recombinant E. coli also possess the ability to respond to purified proteins. We observed that CD4+ cell responses, but not CD8+ cell responses, to recombinant E. coli were significantly associated with the responses to purified proteins. Thus, our results demonstrate the feasibility of using an E. coli expressing system to uncover the antigen specificity of T-cells and highlight its applicability to vaccine studies. These results also emphasize the importance of selecting the stimuli appropriately when evaluating CD4+ and CD8+ cell responses.


Assuntos
Apresentação de Antígeno , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Polissacarídeos Bacterianos/imunologia , Salmonella typhi/imunologia , Linfócitos T/imunologia , Vacinas Tíficas-Paratíficas/imunologia , Adulto , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Polissacarídeos Bacterianos/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinas Tíficas-Paratíficas/administração & dosagem , Voluntários , Adulto Jovem
16.
Front Immunol ; 8: 398, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28428786

RESUMO

Gastrointestinal infections by Salmonella enterica serovar Typhi (S. Typhi) are rare in industrialized countries. However, they remain a major public health problem in the developing world with an estimated 26.9 million new cases annually and significant mortality when untreated. Recently, we provided the first direct evidence that CD8+ MAIT cells are activated and have the potential to kill cells exposed to S. Typhi, and that these responses are dependent on bacterial load. However, MAIT cell kinetics and function during bacterial infections in humans remain largely unknown. In this study, we characterize the human CD8+ MAIT cell immune response to S. Typhi infection in subjects participating in a challenge clinical trial who received a low- or high dose of wild-type S. Typhi. We define the kinetics of CD8+ MAIT cells as well as their levels of activation, proliferation, exhaustion/apoptosis, and homing potential. Regardless of the dose, in volunteers resistant to infection (NoTD), the levels of CD8+ MAIT cells after S. Typhi challenge fluctuated around their baseline values (day 0). In contrast, volunteers susceptible to the development of typhoid disease (TD) exhibited a sharp decline in circulating MAIT cells during the development of typhoid fever. Interestingly, MAIT cells from low-dose TD volunteers had higher levels of CD38 coexpressing CCR9, CCR6, and Ki67 during the development of typhoid fever than high-dose TD volunteers. No substantial perturbations on the levels of these markers were observed in NoTD volunteers irrespective of the dose. In sum, we describe, for the first time, that exposure to an enteric bacterium, in this case S. Typhi, results in changes in MAIT cell activation, proliferation, and homing characteristics, suggesting that MAIT cells are an important component of the human host response to bacterial infection.

18.
J Vis Exp ; (113)2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27500889

RESUMO

Because cells growing in a three-dimensional (3-D) environment have the potential to bridge many gaps of cell cultivation in 2-D environments (e.g., flasks or dishes). In fact, it is widely recognized that cells grown in flasks or dishes tend to de-differentiate and lose specialized features of the tissues from which they were derived. Currently, there are mainly two types of 3-D culture systems where the cells are seeded into scaffolds mimicking the native extracellular matrix (ECM): (a) static models and (b) models using bioreactors. The first breakthrough was the static 3-D models. 3-D models using bioreactors such as the rotating-wall-vessel (RWV) bioreactors are a more recent development. The original concept of the RWV bioreactors was developed at NASA's Johnson Space Center in the early 1990s and is believed to overcome the limitations of static models such as the development of hypoxic, necrotic cores. The RWV bioreactors might circumvent this problem by providing fluid dynamics that allow the efficient diffusion of nutrients and oxygen. These bioreactors consist of a rotator base that serves to support and rotate two different formats of culture vessels that differ by their aeration source type: (1) Slow Turning Lateral Vessels (STLVs) with a co-axial oxygenator in the center, or (2) High Aspect Ratio Vessels (HARVs) with oxygenation via a flat, silicone rubber gas transfer membrane. These vessels allow efficient gas transfer while avoiding bubble formation and consequent turbulence. These conditions result in laminar flow and minimal shear force that models reduced gravity (microgravity) inside the culture vessel. Here we describe the development of a multicellular 3-D organotypic model of the human intestinal mucosa composed of an intestinal epithelial cell line and primary human lymphocytes, endothelial cells and fibroblasts cultured under microgravity provided by the RWV bioreactor.


Assuntos
Reatores Biológicos , Mucosa Intestinal/crescimento & desenvolvimento , Técnicas de Cultura de Órgãos/métodos , Ausência de Peso , Linhagem Celular , Células Endoteliais/citologia , Células Epiteliais/citologia , Fibroblastos/citologia , Humanos , Mucosa Intestinal/citologia , Linfócitos/citologia
19.
Front Immunol ; 6: 466, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441971

RESUMO

Mucosal-associated invariant T (MAIT) cells represent a class of antimicrobial innate-like T cells that have been characterized in human blood, liver, lungs, and intestine. Here, we investigated, for the first time, the presence of MAIT cells in the stomach of children, adults, and the elderly undergoing routine endoscopy and assessed their reactivity to Helicobacter pylori (H. pylori - Hp), a major gastric pathogen. We observed that MAIT cells are present in the lamina propria compartment of the stomach and display a similar memory phenotype to blood MAIT cells. We then demonstrated that gastric and blood MAIT cells are able to recognize H. pylori. We found that CD8(+) and CD4(-)CD8(-) (double negative) MAIT cell subsets respond to H. pylori-infected macrophages stimulation in a MR-1 restrictive manner by producing cytokines (IFN-γ, TNF-α, IL-17A) and exhibiting cytotoxic activity. Interestingly, we observed that blood MAIT cell frequency in Hp(+ve) individuals was significantly lower than in Hp(-ve) individuals. However, gastric MAIT cell frequency was not significantly different between Hp(+ve) and Hp(-ve) individuals, demonstrating a dichotomy between blood and gastric tissues. Further, we observed that the majority of gastric MAIT cells (>80%) expressed tissue-resident markers (CD69(+) CD103(+)), which were only marginally present on PBMC MAIT cells (<3%), suggesting that gastric MAIT cells are readily available to respond quickly to pathogens. These results contribute important new information to the understanding of MAIT cells function on peripheral and mucosal tissues and its possible implications in the host response to H. pylori.

20.
Front Immunol ; 4: 511, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24432025

RESUMO

A common finding when measuring T cell immunity to enteric bacterial vaccines in humans is the presence of background responses among individuals before immunization. Yet the nature of these background responses remains largely unknown. Recent findings show the presence in uninfected individuals of mucosal associated invariant T (MAIT) cells that mount broad spectrum immune responses against a variety of microorganisms including Mycobacterium tuberculosis and enteric bacteria such as Escherichia coli and Salmonella. Therefore, we investigated whether MAIT immune responses to intestinal bacteria might account for the background responses observed before immunization. Here we measured MAIT immune responses to commensal and enteric pathogenic bacteria in healthy individuals with no history of oral immunization with enteric bacteria. We found that MAIT cells were activated by B cells infected with various bacteria strains (commensals and pathogens from the Enterobacteriaceae family), but not by uninfected cells. These responses were restricted by the non-classical MHC-related molecule 1 (MR1) and involved the endocytic pathway. The quality of these responses (i.e., cytokine profile) was dependent on bacterial load but not on the level expression of MR1 or bacterial antigen on B cell surface, suggesting that a threshold level of MR1 expression is required to trigger MAIT activation. These results provide important insights into the role of B cells as a source of antigen-presenting cells to MAIT cells and the gut immune surveillance of commensal microbiota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA