Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Phytopathology ; 114(5): 1039-1049, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514043

RESUMO

Aerial blight, caused by the fungus Rhizoctonia solani anastomosis group (AG) 1-IA, is an economically important soybean disease in the mid-Southern United States. Management has relied on fungicide applications during the season, but there is an increasing prevalence of resistance to commonly used strobilurin fungicides and an urgent need to identify soybean varieties resistant to aerial blight. Because the patchy distribution of the pathogen complicates field variety screening, the present study aimed to develop a greenhouse screening protocol to identify soybean varieties resistant to aerial blight. For this, 88 pathogen isolates were collected from commercial fields and research farms across five Louisiana parishes, and 77% were confirmed to be R. solani AG1-IA. Three polymorphic codominant microsatellite markers were used to explore the genetic diversity of 43 R. solani AG1-IA isolates, which showed high genetic diversity, with 35 haplotypes in total and only two haplotypes common to two other locations. Six genetically diverse isolates were chosen and characterized for their virulence and fungicide sensitivity. The isolate AC2 was identified as the most virulent and was resistant to both active ingredients, azoxystrobin and pyraclostrobin, tested. The six isolates were used in greenhouse variety screening trials using a millet inoculation protocol. Of the 31 varieties screened, only Armor 48-D25 was classified as moderately resistant, and plant height to the first node influenced final disease severity. The study provides short-term solutions for growers to choose less susceptible varieties for planting and lays the foundation to characterize host resistance against this important soybean pathogen.


Assuntos
Fungicidas Industriais , Glycine max , Doenças das Plantas , Rhizoctonia , Rhizoctonia/fisiologia , Rhizoctonia/genética , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/patogenicidade , Doenças das Plantas/microbiologia , Glycine max/microbiologia , Fungicidas Industriais/farmacologia , Resistência à Doença/genética , Estrobilurinas/farmacologia , Metacrilatos/farmacologia , Variação Genética , Repetições de Microssatélites/genética , Pirazóis/farmacologia , Virulência/genética , Louisiana , Pirimidinas
2.
J Anat ; 240(6): 1005-1019, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35332552

RESUMO

Dicraeosaurid sauropods are iconically characterized by the presence of elongate hemispinous processes in presacral vertebrae. These hemispinous processes can show an extreme degree of elongation, such as in the Argentinean forms Amargasaurus cazaui, Pilmatueia faundezi and Bajadasaurus pronuspinax. These hyperelongated hemispinous processes have been variably interpreted as a support structure for a padded crest/sail as a display, a bison-like hump or as the internal osseous cores of cervical horns. With the purpose to test these hypotheses, here we analyze, for the first time, the external morphology, internal microanatomy and bone microstructure of the hemispinous processes from the holotype of Amargasaurus, in addition to a second dicraeosaurid indet. (also from the La Amarga Formatin; Lower Cretaceous, Argentina). Transverse thin-sections sampled from the proximal, mid and distal portions of both cervical and dorsal hemispinous processes reveal that the cortical bone is formed by highly vascularized fibrolamellar bone interrupted with cyclical growth marks. Obliquely oriented Sharpey's fibres are mostly located in the medial and lateral portions of the cortex. Secondary remodelling is evidenced by the presence of abundant secondary osteons irregularly distributed within the cortex. Both anatomical and histological evidence does not support the presence of a keratinized sheath (i.e. horn) covering the hyperelongated hemispinous processes of Amargasaurus, and either, using a parsimonious criterium, in other dicraeosaurids with similar vertebral morphology. The spatial distribution and relative orientation of the Sharpey's fibres suggest the presence of an important system of interspinous ligaments that possibly connect successive hemispinous processes in Amargasaurus. These ligaments were distributed along the entirety of the hemispinous processes. The differential distribution of secondary osteons indicates that the cervical hemispinous processes of Amargasaurus were subjected to mechanical forces that generated higher compression strain on the anterior side of the elements. Current data support the hypothesis for the presence of a 'cervical sail' in Amargasaurus and other dicraeosaurids.


Assuntos
Dinossauros , Animais , Osso e Ossos/anatomia & histologia , Dinossauros/anatomia & histologia , Ósteon , Ligamentos/anatomia & histologia , Coluna Vertebral/anatomia & histologia
3.
Nature ; 522(7556): 331-4, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25915021

RESUMO

Theropod dinosaurs were the dominant predators in most Mesozoic era terrestrial ecosystems. Early theropod evolution is currently interpreted as the diversification of various carnivorous and cursorial taxa, whereas the acquisition of herbivorism, together with the secondary loss of cursorial adaptations, occurred much later among advanced coelurosaurian theropods. A new, bizarre herbivorous basal tetanuran from the Upper Jurassic of Chile challenges this conception. The new dinosaur was discovered at Aysén, a fossil locality in the Upper Jurassic Toqui Formation of southern Chile (General Carrera Lake). The site yielded abundant and exquisitely preserved three-dimensional skeletons of small archosaurs. Several articulated individuals of Chilesaurus at different ontogenetic stages have been collected, as well as less abundant basal crocodyliforms, and fragmentary remains of sauropod dinosaurs (diplodocids and titanosaurians).


Assuntos
Dinossauros/fisiologia , Fósseis , Herbivoria , Animais , Osso e Ossos/anatomia & histologia , Chile , Dinossauros/anatomia & histologia , Dinossauros/classificação , Filogenia , Dente/anatomia & histologia
4.
J Nat Prod ; 81(10): 2296-2300, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30281303

RESUMO

The new pyrrole-imidazole and pyrrole-guanidine alkaloids 4-debromooroidin (1), 4-debromougibohlin (2), 5-debromougibohlin (3), and 5-bromopalau'amine (4), along with the known hymenidin (5) and (+)-monobromoisophakellin (6), have been isolated from a Dictyonella sp. marine sponge, collected at the Amazon River mouth. The bromine-substitution pattern observed for compounds 1, 2 and 4 is unusual among bromopyrrole alkaloids isolated from marine sponges. The 20S proteasome inhibitory activities of compounds 1-6 have been recorded, with 5-bromopalau'amine (4) being the most active in this series.


Assuntos
Poríferos/química , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Pirróis/química , Pirróis/farmacologia , Animais , Brasil , Estrutura Molecular , Complexo de Endopeptidases do Proteassoma , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
5.
Proc Biol Sci ; 284(1860)2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28794222

RESUMO

Titanosauria was the most diverse and successful lineage of sauropod dinosaurs. This clade had its major radiation during the middle Early Cretaceous and survived up to the end of that period. Among sauropods, this lineage has the most disparate values of body mass, including the smallest and largest sauropods known. Although recent findings have improved our knowledge on giant titanosaur anatomy, there are still many unknown aspects about their evolution, especially for the most gigantic forms and the evolution of body mass in this clade. Here we describe a new giant titanosaur, which represents the largest species described so far and one of the most complete titanosaurs. Its inclusion in an extended phylogenetic analysis and the optimization of body mass reveals the presence of an endemic clade of giant titanosaurs inhabited Patagonia between the Albian and the Santonian. This clade includes most of the giant species of titanosaurs and represents the major increase in body mass in the history of Titanosauria.


Assuntos
Evolução Biológica , Dinossauros , Fósseis , Animais , Tamanho Corporal , Filogenia
6.
Microb Ecol ; 74(4): 868-876, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28624904

RESUMO

Holobionts are characterized by the relationship between host and their associated organisms such as the biofilm associated with macroalgae. Considering that light is essential to macroalgae survival, the aim of this study was to verify the effect of light on the heterotrophic activity in biofilms of the brown macroalgae Sargassum furcatum during its growth cycle. Measurements of heterotrophic activity were done under natural light levels at different times during a daily cycle and under an artificial extinction of natural light during the afternoon. We also measured Sargassum primary production under these light levels in the afternoon. Both measurements were done with and without photosynthesis inhibitor and antibiotics. Biofilm composition was mainly represented by bacteria but diatoms, cyanobacteria, and other organisms were also common. When a peak of diatom genera was recorded, the heterotrophic activity of the biofilm was higher. Heterotrophic activity was usually highest during the afternoon and the presence of a photosynthesis inhibitor caused an average reduction of 17% but there was no relationship with Sargassum primary production. These results indicate that autotrophic production in the biofilm was reduced by the inhibitor with consequences on bacterial activity. Heterotrophic activity was mainly bacterial and the antibiotics chloramphenicol and penicillin were more effective than streptomycin. We suggest primary producers in the biofilm are more important to increase bacterial activity than the macroalgae itself because of coherence of the peaks of heterotrophic and autotrophic activity in biofilm during the afternoon and the effects of autotrophic inhibitors on heterotrophic activity.


Assuntos
Antibacterianos/farmacologia , Processos Autotróficos , Fenômenos Fisiológicos Bacterianos , Biofilmes , Luz , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos da radiação , Brasil , Ritmo Circadiano , Sargassum/microbiologia , Estações do Ano
7.
J Phycol ; 53(3): 642-651, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28258584

RESUMO

Over the past few decades, progress has been made toward understanding the mechanisms of coralline algae mineralization. However, the relationship between the mineral phase and the organic matrix in coralline algae has not yet been thoroughly examined. The aim of this study was to describe the cell wall ultrastructure of Lithothamnion crispatum, a cosmopolitan rhodolith-forming coralline algal species collected near Salvador (Brazil), and examine the relationship between the organic matrix and the nucleation and growth/shape modulation of calcium carbonate crystals. A nanostructured pattern was observed in L. crispatum along the cell walls. At the nanoscale, the crystals from L. crispatum consisted of several single crystallites assembled and associated with organic material. The crystallites in the bulk of the cell wall had a high level of spatial organization. However, the crystals displayed cleavages in the (104) faces after ultrathin sectioning with a microtome. This organism is an important model for biomineralization studies as the crystallographic data do not fit in any of the general biomineralization processes described for other organisms. Biomineralization in L. crispatum is dependent on both the soluble and the insoluble organic matrix, which are involved in the control of mineral formation and organizational patterns through an organic matrix-mediated process. This knowledge concerning the mineral composition and organizational patterns of crystals within the cell walls should be taken into account in future studies of changing ocean conditions as they represent important factors influencing the physico-chemical interactions between rhodoliths and the environment in coralline reefs.


Assuntos
Calcificação Fisiológica , Carbonato de Cálcio/metabolismo , Rodófitas/fisiologia , Brasil , Parede Celular/fisiologia , Parede Celular/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
8.
J Phycol ; 53(6): 1294-1304, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28990189

RESUMO

Approximately half of the Padina (Dictyotales, Phaeophyceae) species mineralize aragonite needles over the adaxial thallus surface, where mineral bands are interspersed with nonmineralized regions along the thallus from the apical to basal end. However, this calcification pattern and the related algal properties are not well understood. Therefore, this work was performed to elucidate a potential role of cell walls in the inhibition/induction of mineralization in the brown alga Padina gymnospora. In a comparison of specific thallus regions, differences were identified in the cellulose distribution, microfibrils arrangement and thickness, distribution and abundance of phenolic substances, and physical differences among the surfaces of the thallus (deformation, adhesion, topography, and nano-rugosity). In vitro mineralization assays indicated that phenolic substances are strong modulators of calcium carbonate crystals growth. In addition, de novo mineralization assays over cell wall surfaces that were used as templates, even without cellular activity, indicated that the cell wall remains a key factor in the induction/inhibition of mineralization. Overall, the current findings indicate a strong correlation between the physico-chemical and structural properties of the cell wall and the alternation pattern of the mineralization bands over the thallus of P. gymnospora.


Assuntos
Calcificação Fisiológica , Carbonato de Cálcio/metabolismo , Phaeophyceae/fisiologia , Brasil , Parede Celular/fisiologia , Parede Celular/ultraestrutura , Phaeophyceae/ultraestrutura
9.
Plant Cell Physiol ; 57(5): 1008-19, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26936789

RESUMO

We investigated the organelles involved in the biosynthesis of fatty acid (FA) derivatives in the cortical cells of Laurencia translucida (Rhodophyta) and the effect of these compounds as antifouling (AF) agents. A bluish autofluorescence (with emission at 500 nm) within L. translucida cortical cells was observed above the thallus surface via laser scanning confocal microscopy (LSCM). A hexanic extract (HE) from L. translucida was split into two isolated fractions called hydrocarbon (HC) and lipid (LI), which were subjected to HPLC coupled to a fluorescence detector, and the same autofluorescence pattern as observed by LSCM analyses (emission at 500 nm) was revealed in the LI fraction. These fractions were analyzed by gas chromatography-mass spectrometry (GC-MS), which revealed that docosane is the primary constituent of HC, and hexadecanoic acid and cholesterol trimethylsilyl ether are the primary components of LI. Nile red (NR) labeling (lipid fluorochrome) presented a similar cellular localization to that of the autofluorescent molecules. Transmission and scanning electron microscopy (TEM and SEM) revealed vesicle transport processes involving small electron-lucent vesicles, from vacuoles to the inner cell wall. Both fractions (HC and LI) inhibited micro-fouling [HC, lower minimum inhibitory concentration (MIC) values of 0.1 µg ml(-1); LI, lower MIC value of 10 µg ml(-1)]. The results suggested that L. translucida cortical cells can produce FA derivatives (e.g. HCs and FAs) and secrete them to the thallus surface, providing a unique and novel protective mechanism against microfouling colonization in red algae.


Assuntos
Ácidos Graxos/metabolismo , Rodófitas/fisiologia , Transporte Biológico , Parede Celular/química , Parede Celular/metabolismo , Exocitose , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Rodófitas/química , Vacúolos/metabolismo
10.
J Phycol ; 51(2): 225-35, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26986518

RESUMO

This paper has identified, for the first time in a member of the Rhodophyta, a vacuolar organelle containing enzymes that are involved in the mevalonate pathway-an important step in red algal isoprenoid biosynthesis. These organelles were named mevalonosomes (Mev) and were found in the cortical cells (CC) of Plocamium brasiliense, a marine macroalgae that synthesizes several halogenated monoterpenes. P. brasiliense specimens were submitted to a cytochemical analysis of the activity of the 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS). Using transmission electron microscopy (TEM), we confirmed the presence of HMGS activity within the Mev. Because HMGS is necessary for the biosynthesis of halogenated monoterpenes, we isolated a hexanic fraction (HF) rich in halogenated monoterpenes from P. brasiliense that contained a pentachlorinated monoterpene as a major metabolite. Because terpenes are often related to chemical defense, the antifouling (AF) activity of pentachlorinated monoterpene was tested. We found that the settlement of the mussel Perna perna was reduced by HF treatment (2.25 times less than control; 40% and 90% of fouled surface, respectively; P = 0.001; F9,9 = 1.13). The HF (at 10 µg · mL(-1) ) also inhibited three species of fouling microalgae (Chlorarachnion reptans, Cylindrotheca cloisterium, and Exanthemachrysis gayraliae), while at a higher concentration (50 µg · mL(-1) ), it inhibited the bacteria Halomonas marina, Polaribacter irgensii, Pseudoalteromonas elyakovii, Shewanella putrefaciens, and Vibrio aestuarianus. The AF activity of P. brasiliense halogenated monoterpenes and the localization of HMGS activity inside Mev suggest that this cellular structure found in CC may play a role in thallus protection against biofouling.

11.
Mar Drugs ; 13(2): 879-902, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25675000

RESUMO

The red seaweeds belonging to the genus Laurencia are well known as halogenated secondary metabolites producers, mainly terpenoids and acetogennins. Several of these chemicals exhibit important ecological roles and biotechnological applications. However, knowledge regarding the genes involved in the biosynthesis of these compounds is still very limited. We detected 20 different genes involved in the biosynthesis of terpenoid precursors, and 21 different genes coding for terpene synthases that are responsible for the chemical modifications of the terpenoid precursors, resulting in a high diversity of carbon chemical skeletons. In addition, we demonstrate through molecular and cytochemical approaches the occurrence of the mevalonate pathway involved in the biosynthesis of terpenes in L. dendroidea. This is the first report on terpene synthase genes in seaweeds, enabling further studies on possible heterologous biosynthesis of terpenes from L. dendroidea exhibiting ecological or biotechnological interest.


Assuntos
Laurencia/química , Terpenos/química , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Vias Biossintéticas , Configuração de Carboidratos , DNA Complementar/biossíntese , DNA Complementar/genética , Laurencia/enzimologia , Laurencia/genética , Ácido Mevalônico/metabolismo , Modelos Moleculares , Terpenos/metabolismo , Transcriptoma/genética
12.
BMC Genomics ; 15: 236, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24670056

RESUMO

BACKGROUND: The rubber tree, Hevea brasiliensis, is a species native to the Brazilian Amazon region and it supplies almost all the world's natural rubber, a strategic raw material for a variety of products. One of the major challenges for developing rubber tree plantations is adapting the plant to biotic and abiotic stress. Transcriptome analysis is one of the main approaches for identifying the complete set of active genes in a cell or tissue for a specific developmental stage or physiological condition. RESULTS: Here, we report on the sequencing, assembling, annotation and screening for molecular markers from a pool of H. brasiliensis tissues. A total of 17,166 contigs were successfully annotated. Then, 2,191 Single Nucleotide Variation (SNV) and 1.397 Simple Sequence Repeat (SSR) loci were discriminated from the sequences. From 306 putative, mainly non-synonymous SNVs located in CDS sequences, 191 were checked for their ability to characterize 23 Hevea genotypes by an allele-specific amplification technology. For 172 (90%), the nucleotide variation at the predicted genomic location was confirmed, thus validating the different steps from sequencing to the in silico detection of the SNVs. CONCLUSIONS: This is the first study of the H. brasiliensis transcriptome, covering a wide range of tissues and organs, leading to the production of the first developed SNP markers. This process could be amplified to a larger set of in silico detected SNVs in expressed genes in order to increase the marker density in available and future genetic maps. The results obtained in this study will contribute to the H. brasiliensis genetic breeding program focused on improving of disease resistance and latex yield.


Assuntos
Genes de Plantas , Hevea/genética , Análise por Conglomerados , Mapeamento de Sequências Contíguas , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Loci Gênicos , Marcadores Genéticos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA , Transcriptoma
13.
Microb Ecol ; 65(2): 424-36, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22965803

RESUMO

The ecological interaction between microorganisms and seaweeds depends on the production of secondary compounds that can influence microbial diversity in the water column and the composition of reef environments. We adapted the (3)H-leucine incorporation technique to measure bacterial activity in biofilms associated with the blades of the macroalgae Sargassum spp. We evaluated (1) if the epiphytic bacteria on the blades were more active in detritus or in the biofilm, (2) substrate saturation and linearity of (3)H-leucine incorporation, (3) the influence of specific metabolic inhibitors during (3)H-leucine incorporation under the presence or absence of natural and artificial light, and (4) the efficiency of radiolabeled protein extraction. Scanning electron microscopy showed heterogeneous distribution of bacteria, diatoms, and polymeric extracellular secretions. Active bacteria were present in both biofilm and detritus on the blades. The highest (3)H-leucine incorporation was obtained when incubating blades not colonized by macroepibionts. Incubations done under field conditions reported higher (3)H-leucine incorporation than in the laboratory. Light quality and sampling manipulation seemed to be the main factors behind this difference. The use of specific metabolic inhibitors confirmed that bacteria are the main group incorporating (3)H-leucine but their association with primary production suggested a symbiotic relationship between bacteria, diatoms, and the seaweed.


Assuntos
Bactérias/metabolismo , Biofilmes , Processos Heterotróficos , Sargassum/microbiologia , Microbiologia da Água , Bactérias/efeitos da radiação , Leucina/metabolismo , Luz , Microscopia Eletrônica de Varredura , Alga Marinha/microbiologia
14.
Cells ; 12(18)2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37759481

RESUMO

Laurencia seaweed species synthesize a broad range of secondary metabolites, mainly terpenes (e.g., elatol), exhibiting diverse ecological roles, such as defense against fouling and herbivores. Recently, an intricate cellular machinery was described concerning terpenes biosynthetic pathways, storage inside corps en cerise (CC), and regulated exocytosis in these species. But for seaweeds in general, the proteins involved in transmembrane transport of secondary metabolites remain unknown. Assays with Rhodamine-123 and cyclosporine A (CSA) revealed the presence of ABC transporters in CC membrane of Laurencia dendroidea. In vivo incubation assays with CSA resulted in CC morphological changes, reduced intracellular elatol concentrations, and increased biofouling cover on the seaweed surface. Cultivation assays in the presence of a marine pathogenic bacteria induced the expression of ABC proteins belonging to the subfamilies ABCB, ABCD, ABCF, and ABCG. The latter subfamily is known to be associated with the transport of plant terpenes. Our results shed new light on the role of ABC proteins in key mechanisms of the defensive system in seaweeds against fouling and herbivory.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Alga Marinha , Metabolismo Secundário , Ciclosporina , Terpenos
15.
Plants (Basel) ; 12(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903932

RESUMO

Brown marine macroalga Padina gymnospora (Phaeophyceae, Ochrophyta) produces both secondary metabolites (phlorotannins) and precipitate calcium carbonate (CaCO3-aragonite) on its surface as potential defensive strategies against herbivory. Here, we have evaluated the effect of natural concentrations of organic extracts (dichloromethane-DI; ethyl acetate-EA and methanol-ME, and three isolated fractions) and mineralized tissues of P. gymnospora as chemical and physical resistance, respectively, against the sea urchin Lytechinus variegatus through experimental laboratory feeding bioassays. Fatty acids (FA), glycolipids (GLY), phlorotannins (PH) and hydrocarbons (HC) were also characterized and/or quantified in extracts and fractions from P. gymnospora using nuclear magnetic resonance (NMR) and gas chromatography (GC) coupled to mass spectrometry (CG/MS) or GC coupled to flame ionization detector (FID) and chemical analysis. Our results showed that chemicals from the EA extract of P. gymnospora were significantly important in reducing consumption by L. variegatus, but the CaCO3 did not act as a physical protection against consumption by this sea urchin. An enriched fraction containing 76% of the new hydrocarbon 5Z,8Z,11Z,14Z-heneicosatetraene exhibited a significant defensive property, while other chemicals found in minor amounts, such as GLY, PH, saturated and monounsaturated FAs and CaCO3 did not interfere with the susceptibility of P. gymnospora to L. variegatus consumption. We suggest that the unsaturation of the 5Z,8Z,11Z,14Z-heneicosatetraene from P. gymnospora is probably an important structural characteristic responsible for the defensive property verified against the sea urchin.

16.
BMC Genomics ; 13: 487, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22985125

RESUMO

BACKGROUND: Seaweeds of the Laurencia genus have a broad geographic distribution and are largely recognized as important sources of secondary metabolites, mainly halogenated compounds exhibiting diverse potential pharmacological activities and relevant ecological role as anti-epibiosis. Host-microbe interaction is a driving force for co-evolution in the marine environment, but molecular studies of seaweed-associated microbial communities are still rare. Despite the large amount of research describing the chemical compositions of Laurencia species, the genetic knowledge regarding this genus is currently restricted to taxonomic markers and general genome features. In this work we analyze the transcriptomic profile of L. dendroidea J. Agardh, unveil the genes involved on the biosynthesis of terpenoid compounds in this seaweed and explore the interactions between this host and its associated microbiome. RESULTS: A total of 6 transcriptomes were obtained from specimens of L. dendroidea sampled in three different coastal locations of the Rio de Janeiro state. Functional annotations revealed predominantly basic cellular metabolic pathways. Bacteria was the dominant active group in the microbiome of L. dendroidea, standing out nitrogen fixing Cyanobacteria and aerobic heterotrophic Proteobacteria. The analysis of the relative contribution of each domain highlighted bacterial features related to glycolysis, lipid and polysaccharide breakdown, and also recognition of seaweed surface and establishment of biofilm. Eukaryotic transcripts, on the other hand, were associated with photosynthesis, synthesis of carbohydrate reserves, and defense mechanisms, including the biosynthesis of terpenoids through the mevalonate-independent pathway. CONCLUSIONS: This work describes the first transcriptomic profile of the red seaweed L. dendroidea, increasing the knowledge about ESTs from the Florideophyceae algal class. Our data suggest an important role for L. dendroidea in the primary production of the holobiont and the role of Bacteria as consumers of organic matter and possibly also as nitrogen source. Furthermore, this seaweed expressed sequences related to terpene biosynthesis, including the complete mevalonate-independent pathway, which offers new possibilities for biotechnological applications using secondary metabolites from L. dendroidea.


Assuntos
Cianobactérias/genética , Laurencia/genética , Metagenoma , Proteobactérias/genética , Alga Marinha/genética , Transcriptoma , Cianobactérias/metabolismo , DNA Complementar/biossíntese , Etiquetas de Sequências Expressas , Laurencia/metabolismo , Laurencia/microbiologia , Redes e Vias Metabólicas/genética , Fotossíntese , Proteobactérias/metabolismo , Alga Marinha/metabolismo , Alga Marinha/microbiologia , Análise de Sequência de DNA , Simbiose , Terpenos/metabolismo
17.
Naturwissenschaften ; 99(1): 83-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22173579

RESUMO

Sauropoda is one of the most diverse and geographically widespread clades of herbivorous dinosaurs, and until now, their remains have now been recovered from all continental landmasses except Antarctica. We report the first record of a sauropod dinosaur from Antarctica, represented by an incomplete caudal vertebra from the Late Cretaceous of James Ross Island. The size and morphology of the specimen allows its identification as a lithostrotian titanosaur. Our finding indicates that advanced titanosaurs achieved a global distribution at least by the Late Cretaceous.


Assuntos
Osso e Ossos/anatomia & histologia , Dinossauros/anatomia & histologia , Fósseis , Animais , Regiões Antárticas , Dinossauros/classificação
18.
Front Genet ; 13: 815093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368695

RESUMO

With long reproductive timescales, large complex genomes, and a lack of reliable reference genomes, understanding gene function in conifers is extremely challenging. Consequently, our understanding of which genetic factors influence the development of reproductive structures (cones) in monoecious conifers remains limited. Genes with inferred roles in conifer reproduction have mostly been identified through homology and phylogenetic reconstruction with their angiosperm counterparts. We used RNA-sequencing to generate transcriptomes of the early morphological stages of cone development in the conifer species Pinus densiflora and used these to gain a deeper insight into the transcriptional changes during male and female cone development. Paired-end Illumina sequencing was used to generate transcriptomes from non-reproductive tissue and male and female cones at four time points with a total of 382.82 Gbp of data generated. After assembly and stringent filtering, a total of 37,164 transcripts were retrieved, of which a third were functionally annotated using the Mercator plant pipeline. Differentially expressed gene (DEG) analysis resulted in the identification of 172,092 DEGs in the nine tissue types. This, alongside GO gene enrichment analyses, pinpointed transcripts putatively involved in conifer reproductive structure development, including co-orthologs of several angiosperm flowering genes and several that have not been previously reported in conifers. This study provides a comprehensive transcriptome resource for male and early female cone development in the gymnosperm species Pinus densiflora. Characterisation of this resource has allowed the identification of potential key players and thus provides valuable insights into the molecular regulation of reproductive structure development in monoecious conifers.

19.
Environ Entomol ; 51(1): 196-203, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34729590

RESUMO

Cultivar resistance is a key management strategy for the sugarcane borer, Diatraea saccharalis (F.), the primary pest in Louisiana sugarcane, but mechanisms of resistance are not well understood. This research evaluated the potential mechanisms of cultivar resistance to D. saccharalis among commercially produced sugarcane cultivars and experimental lines through three field screenings, two greenhouse experiments, and one diet incorporation assay. The resistant standards HoCP 85-845, HoCP 04-838, and L 01-299 were among the cultivars with the lowest D. saccharalis injury levels in both field and greenhouse trials. Cultivars HoCP 00-950 and L 12-201 were among the most heavily injured in both trials. Differences in oviposition among cultivars in the greenhouse choice study were not detected, suggesting adult preference is not a key factor in resistance. This was also supported by the no-choice greenhouse experiment in which up to 9-fold differences in neonate establishment among cultivars were detected. Larval injury among cultivars in greenhouse experiments was consistent with field studies suggesting traits that affect neonate establishment (e.g., rind hardness) help to confer resistance in the field. In the diet incorporation assay, lower larval weights and longer time to pupation were observed on resistant cultivar Ho 08-9003, but no differences were found among current commercial cultivars. Continuous evaluation of cultivar resistance to D. saccharalis is important in developing effective integrated pest management strategies for this pest. More research into plant characteristics (e.g., leaf sheath tightness and pubescence) associated with resistance is needed.


Assuntos
Mariposas , Saccharum , Animais , Feminino , Larva , Louisiana , Oviposição , Controle de Pragas
20.
Insects ; 13(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36292838

RESUMO

Cultivar resistance is an essential management strategy for the Mexican rice borer, Eoreuma loftini (Dyar), in sugarcane in the USA, but resistance mechanisms are poorly understood. Resistance was evaluated among Louisiana's (USA) commercial sugarcane cultivars and experimental clones through field screenings, greenhouse trials, and a diet incorporation assay. Cultivars L 01-299 and HoCP 85-845 had the lowest borer injury levels, while HoCP 00-950 and L 12-201 were among the most heavily injured in field and greenhouse trials. The variability of results between the two field trials suggests that a genotype × environment interaction might affect the expression of resistance. Oviposition did not differ among evaluated cultivars in the greenhouse choice study. Results from the no-choice experiment showed that neonatal establishment differed among cultivars by up to 3-fold. In a diet incorporation assay, all cultivars reduced larval weight up to 86.5% and increased days to pupation by 1.8-fold relative to the diet-only control. Collectively, these results suggest that Louisiana's sugarcane breeding germplasm contains various resistance levels to E. loftini, emphasizing the importance of screening cultivars before they are released to growers. Future studies should try to determine the influence of environmental factors on resistance expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA