RESUMO
ATPase, class 1, type 8 A, member 2 (ATP8A2) is a P4-ATPase with a critical role in phospholipid translocation across the plasma membrane. Pathogenic variants in ATP8A2 are known to cause cerebellar ataxia, impaired intellectual development, and disequilibrium syndrome 4 (CAMRQ4) which is often associated with encephalopathy, global developmental delay, and severe motor deficits. Here, we present a family with two siblings born from a consanguineous, first-cousin union from Sudan presenting with global developmental delay, intellectual disability, spasticity, ataxia, nystagmus, and thin corpus callosum. Whole exome sequencing revealed a homozygous missense variant in the nucleotide binding domain of ATP8A2 (p.Leu538Pro) that results in near complete loss of protein expression. This is in line with other missense variants in the same domain leading to protein misfolding and loss of ATPase function. In addition, by performing diffusion-weighted imaging, we identified bilateral hyperintensities in the posterior limbs of the internal capsule suggesting possible microstructural changes in axon tracts that had not been appreciated before and could contribute to the sensorimotor deficits in these individuals.
RESUMO
Objectives: This study aimed to investigate the effect of Environmental Pollutants Particulate Matter PM2.5, PM10, Carbon Monoxide (CO), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), and Ozone (O3) on lung airway inflammation by assessing the Fractional Exhaled Nitric Oxide (FeNO) in students studying in schools located in or away from air-polluted areas. Methods: This matched case-control cross-sectional study was conducted in the Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia from August 2022 to July 2023. In this study, two schools were selected, one was located near a traffic-polluted area (School #1), and the second was located away from the traffic-polluted area (School #2). A total of 300 students were recruited, 150 (75 male and 75 female) students from the school located in a traffic-polluted area, and 150 students (75 male and 75 female) from the school located away from a traffic-polluted area. Environmental pollutants PM2.5, PM10, CO, NO2, O3, and SO2, were recorded. The Fractional Exhaled Nitric Oxide (FeNO) was measured using a Niox Mino. Results: The mean concentration of PM2.5, PM10, CO, NO2, O3, and SO2 were 35.00±0.65 significantly higher in a school located in motor vehicle polluted area compared to a school located away from a motor vehicle-polluted area (29.95±0.32) (p=0.001). The mean values for FeNO were significantly higher (18.75±0.90) among students studying in a school located in the motor vehicle-polluted area compared to students studying in a school located away from the motor vehicle-polluted area (11.26±0.56) (p=0.001). Conclusions: Environmental pollution can cause lung inflammation among students in schools located in traffic-polluted areas.
RESUMO
Hyperekplexia is a rare neurological disorder characterized by exaggerated startle responses affecting newborns with the hallmark characteristics of hypertonia, apnea, and noise or touch-induced nonepileptic seizures. The genetic causes of the disease can vary, and several associated genes and mutations have been reported to affect glycine receptors (GlyRs); however, the mechanistic links between GlyRs and hyperekplexia are not yet understood. Here, we describe a patient with hyperekplexia from a consanguineous family. Extensive genetic screening using exome sequencing coupled with autozygome analysis and iterative filtering supplemented by in silico prediction identified that the patient carries the homozygous missense mutation A455P in GLRB, which encodes the GlyR ß-subunit. To unravel the physiological and molecular effects of A455P on GlyRs, we used electrophysiology in a heterologous system as well as immunocytochemistry, confocal microscopy, and cellular biochemistry. We found a reduction in glycine-evoked currents in N2A cells expressing the mutation compared to WT cells. Western blot analysis also revealed a reduced amount of GlyR ß protein both in cell lysates and isolated membrane fractions. In line with the above observations, coimmunoprecipitation assays suggested that the GlyR α1-subunit retained coassembly with ßA455P to form membrane-bound heteromeric receptors. Finally, structural modeling showed that the A455P mutation affected the interaction between the GlyR ß-subunit transmembrane domain 4 and the other helices of the subunit. Taken together, our study identifies and validates a novel loss-of-function mutation in GlyRs whose pathogenicity is likely to cause hyperekplexia in the affected individual.
Assuntos
Hiperecplexia , Receptores de Glicina , Humanos , Hiperecplexia/genética , Recém-Nascido , Rigidez Muscular , Mutação , Mutação de Sentido Incorreto , Receptores de Glicina/genéticaRESUMO
PURPOSE: Missense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability. METHODS: By international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro. RESULTS: In accordance with previous observations, de novo heterozygous missense variants in the BTB domain region led to a severe developmental and epileptic encephalopathy in 16 individuals. Now, we also identified de novo missense variants in the GTPase domain in 6 individuals with apparently more variable neurodevelopmental phenotypes with or without epilepsy. In contrast to variants in the BTB domain region, variants in the GTPase domain do not impair proteasomal degradation of RHOBTB2 in vitro, indicating different functional consequences. Furthermore, we observed biallelic splice-site and truncating variants in 9 families with variable neurodevelopmental phenotypes, indicating that complete loss of RHOBTB2 is pathogenic as well. CONCLUSION: By identifying genotype-phenotype correlations regarding location and consequences of de novo missense variants in RHOBTB2 and by identifying biallelic truncating variants, we further delineate and expand the molecular and clinical spectrum of RHOBTB2-related phenotypes, including both autosomal dominant and recessive neurodevelopmental disorders.
Assuntos
Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Epilepsia/genética , Epilepsia/patologia , Estudos de Associação Genética , Deficiência Intelectual/genética , Fenótipo , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Proteínas Supressoras de Tumor/genéticaRESUMO
CNOT2 haploinsufficiency underlies a rare neurodevelopmental disorder named Intellectual Developmental disorder with NAsal speech, Dysmorphic Facies, and variable Skeletal anomalies (IDNADFS, OMIM 618608). The condition clinically overlaps with chromosome 12q15 deletion syndrome, suggesting a major contribution of CNOT2 haploinsufficiency to the latter. CNOT2 is a member of the CCR4-NOT complex, which is a master regulator of multiple cellular processes, including gene expression, RNA deadenylation, and protein ubiquitination. To date, less than 20 pathogenic 12q15 microdeletions encompassing CNOT2, together with a single truncating variant of the gene, and two large intragenic deletions have been reported. Due to the small number of affected subjects described so far, the clinical profile of IDNADFS has not been fully delineated. Here we report five unrelated individuals, three of which carrying de novo intragenic CNOT2 variants, one presenting with a multiexon intragenic deletion, and an additional case of 12q15 microdeletion syndrome. Finally, we assess the features of IDNADFS by reviewing published and present affected individuals and reevaluate the clinical phenotype of this neurodevelopmental disorder.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deleção Cromossômica , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Fenótipo , Proteínas Repressoras/genéticaRESUMO
BACKGROUND: Intellectual disability is a form of neurodevelopmental disorders that begin in childhood and is characterized by substantial intellectual difficulties as well as difficulties in conceptual, social, and practical areas of living. Several genetic and nongenetic factors contribute to its development; however, its most severe forms are generally attributed to single-gene defects. High-throughput technologies and data sharing contributed to the diagnosis of hundreds of single-gene intellectual disability subtypes. METHOD: We applied exome sequencing to identify potential variants causing syndromic intellectual disability in six Sudanese patients from four unrelated families. Data sharing through the Varsome portal corroborated the diagnosis of one of these patients and a Tunisian patient investigated through exome sequencing. Sanger sequencing validated the identified variants and their segregation with the phenotypes in the five studied families. RESULT: We identified three pathogenic/likely pathogenic variants in CCDC82, ADAT3, and HUWE1 and variants of uncertain significance in HERC2 and ATP2B3. The patients with the CCDC82 variants had microcephaly and spasticity, two signs absent in the two previously reported families with CCDC82-related intellectual disability. CONCLUSION: In conclusion, we report new patients with pathogenic mutations in the genes CCDC82, ADAT3, and HUWE1. We also highlight the possibility of extending the CCDC82-linked phenotype to include spastic paraplegia and microcephaly.
Assuntos
Adenosina Desaminase , Deficiência Intelectual , Proteínas de Ligação a RNA , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Adenosina Desaminase/genética , Exoma , Humanos , Deficiência Intelectual/diagnóstico , Microcefalia/genética , Mutação , Paraplegia/genética , Linhagem , Fenótipo , Proteínas de Ligação a RNA/genética , Sudão , Proteínas Supressoras de Tumor/genética , Tunísia , Ubiquitina-Proteína Ligases/genética , Sequenciamento do ExomaRESUMO
PRUNE1 is linked to a wide range of neurodevelopmental and neurodegenerative phenotypes. Multiple pathogenic missense and stop-gain PRUNE1 variants were identified in its DHH and DHHA2 phosphodiesterase domains. Conversely, a single splice alteration was previously reported. We investigated five patients from two unrelated consanguineous Sudanese families with an inherited severe neurodevelopmental disorder using whole-exome sequencing coupled with homozygosity mapping, segregation, and haplotype analysis. We identified a founder haplotype transmitting a homozygous canonical splice-donor variant (NM_021222.3:c.132+2T > C) in intron 2 of PRUNE1 segregated with the phenotype in all the patients. This splice variant possibly results in an in-frame deletion in the DHH domain or premature truncation of the protein. The phenotypes of the affected individuals showed phenotypic similarities characterized by remarkable pyramidal dysfunction and prominent extrapyramidal features (severe dystonia and bradykinesia). In conclusion, we identified a novel founder variant in PRUNE1 and corroborated abnormal splicing events as a disease mechanism in PRUNE1-related disorders. Given the phenotypes' consistency coupled with the founder effect, canonical and cryptic PRUNE1 splice-site variants should be carefully evaluated in patients presenting with prominent dystonia and pyramidal dysfunction.
Assuntos
Distonia/genética , Hipocinesia/genética , Transtornos do Neurodesenvolvimento/genética , Monoéster Fosfórico Hidrolases/genética , Splicing de RNA , Criança , Pré-Escolar , Consanguinidade , Feminino , Haplótipos , Homozigoto , Humanos , Íntrons , Masculino , Linhagem , Fenótipo , Sítios de Splice de RNA , Sudão , Sequenciamento do ExomaRESUMO
BACKGROUND: CCDC88C is a ubiquitously expressed protein with multiple functions, including roles in cell polarity and the development of dendrites in the nervous system. Bi-allelic mutations in the CCDC88C gene cause autosomal recessive congenital hydrocephalus (OMIM #236600). Studies recently linked heterozygous mutations in CCDC88C to the development of the late-onset spinocerebellar ataxia type 40 (OMIM #616053). CASE PRESENTATION: A 48-year-old Sudanese female presented with pure early onset hereditary spastic paraplegia. Exome sequencing, in-silico analysis, and Sanger sequencing identified the heterozygous NM_001080414.4:c.1993G > A (p.E665K) variant in CCDC88C as a potential cause of her illness. To explore the pathogenicity of the NM_001080414.4:c.1993G > A (p.E665K) variant, we expressed it in human embryonic kidney 293 cells and assessed its effects on apoptosis. In our experiment, NM_001080414.4:c.1993G > A (p.E665K) induced JNK hyper-phosphorylation and enhanced apoptosis. In contrast to previous reports, our patient developed neurological symptoms in early childhood and showed neither features of cerebellar ataxia, extrapyramidal signs, nor evidence of intellectual involvement. CONCLUSION: We, herein, heighlighted the possibility of extending the phenotype associated with variants in CCDC88C to include early-onset pure hereditary spastic paraplegia.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas dos Microfilamentos/genética , Paraplegia Espástica Hereditária/genética , Feminino , Heterozigoto , Humanos , Pessoa de Meia-Idade , MutaçãoRESUMO
OBJECTIVES: To assess the neurodevelopmental and epilepsy outcomes in children with infantile spasms (IS). METHODS: A retrospective chart review of all patients with infantile spasms admitted to King Khalid University Hospital (KKUH), Riyadh, Saudi Arabia between January 2000 and December 2017. Infants who were diagnosed to have IS as per the International League Against Epilepsy (ILAE) definition were included in this study. Patients who lost follow-up and those who did not receive treatment at KKUH were excluded. RESULTS: Total of 53 patients were included and categorized into unknown, cryptogenic and symptomatic type of IS. The majority had symptomatic etiology (71.7%). Type of etiology and delay in initiation of treatment were significant predictors of motor and cognitive outcomes, but not seizure control. Patients with unknown IS, who were diagnosed earlier (0.72-month), had better neurodevelopmental outcomes. Vigabatrin in combination with either Adrenocorticotropic hormone (ACTH) or Prednisolone showed better seizure control in comparison to monotherapy and other combination modalities. CONCLUSION: Neurodevelopmental outcomes of IS are strongly associated with the underlying etiology. Early initiation of treatments had a favorable cognitive and motor outcome. Early response to combination therapy with resolution of spasms and hypsarrhythmia had better seizure outcomes. However, motor and cognitive outcomes were not affected by the response to the combination therapy.
Assuntos
Hormônio Adrenocorticotrópico/uso terapêutico , Anticonvulsivantes/uso terapêutico , Prednisolona/uso terapêutico , Espasmos Infantis/tratamento farmacológico , Vigabatrina/uso terapêutico , Quimioterapia Combinada , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Retrospectivos , Arábia Saudita , Centros de Atenção Terciária , Resultado do TratamentoRESUMO
PURPOSE: Ciliopathies are highly heterogeneous clinical disorders of the primary cilium. We aim to characterize a large cohort of ciliopathies phenotypically and molecularly. METHODS: Detailed phenotypic and genomic analysis of patients with ciliopathies, and functional characterization of novel candidate genes. RESULTS: In this study, we describe 125 families with ciliopathies and show that deleterious variants in previously reported genes, including cryptic splicing variants, account for 87% of cases. Additionally, we further support a number of previously reported candidate genes (BBIP1, MAPKBP1, PDE6D, and WDPCP), and propose nine novel candidate genes (CCDC67, CCDC96, CCDC172, CEP295, FAM166B, LRRC34, TMEM17, TTC6, and TTC23), three of which (LRRC34, TTC6, and TTC23) are supported by functional assays that we performed on available patient-derived fibroblasts. From a phenotypic perspective, we expand the phenomenon of allelism that characterizes ciliopathies by describing novel associations including WDR19-related Stargardt disease and SCLT1- and CEP164-related Bardet-Biedl syndrome. CONCLUSION: In this cohort of phenotypically and molecularly characterized ciliopathies, we draw important lessons that inform the clinical management and the diagnostics of this class of disorders as well as their basic biology.
Assuntos
Síndrome de Bardet-Biedl , Ciliopatias , Alelos , Síndrome de Bardet-Biedl/genética , Cílios/genética , Ciliopatias/genética , Humanos , Canais de SódioRESUMO
Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies.
Assuntos
Encefalopatias/genética , Síndromes Epilépticas/genética , Genes Essenciais/genética , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Animais , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação , Linhagem , Peixe-ZebraRESUMO
BACKGROUND: Homozygous frameshift mutation in RUBCN (KIAA0226), known to result in endolysosomal machinery defects, has previously been reported in a single Saudi family with autosomal recessive spinocerebellar ataxia (Salih ataxia, SCAR15, OMIM # 615705). The present report describes the clinical, neurophysiologic, neuroimaging, and genetic findings in a second unrelated Saudi family with two affected children harboring identical homozygous frameshift mutation in the gene. It also explores and documents an ancient founder cerebellar ataxia mutation in the Arabian Peninsula. CASE PRESENTATION: The present family has two affected males (aged 6.5 and 17 years) with unsteady gait apparent since learning to walk at 2.5 and 3 years, respectively. The younger patient showed gait ataxia and normal reflexes. The older patient had saccadic eye movement, dysarthria, mild upper and lower limb and gait ataxia (on tandem walking), and enhanced reflexes in the lower limbs. Cognitive abilities were mildly impaired in the younger sibling (IQ 67) and borderline in the older patient (IQ 72). Nerve conduction studies were normal in both patients. MRI was normal at 2.5 years in the younger sibling. Brain MRI showed normal cerebellar volume and folia in the older sibling at the age of 6 years, and revealed minimal superior vermian atrophy at the age of 16 years. Autozygome and exome analysis showed both affected have previously reported homoallelic mutation in RUBCN (NM_014687:exon18:c.2624delC:p.A875fs), whereas the parents are carriers. Autozygosity mapping focused on smallest haplotype on chromosome 3 and mutation age analysis revealed the mutation occurred approximately 1550 years ago spanning about 62 generations. CONCLUSIONS: Our findings validate the slowly progressive phenotype of Salih ataxia (SCAR15, OMIM # 615705) by an additional family. Haplotype sharing attests to a common founder, an ancient RUBCN mutation in the Arab population.
Assuntos
Proteínas Relacionadas à Autofagia/genética , Mutação da Fase de Leitura/genética , Ataxias Espinocerebelares , Adolescente , Cerebelo/diagnóstico por imagem , Criança , Disfunção Cognitiva , Marcha Atáxica , Humanos , Imageamento por Ressonância Magnética , Masculino , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genéticaRESUMO
INTRODUCTION: Aortic dissection is a cardiovascular emergency with an overall in-hospital mortality rate of 27.4%, and with every hour without intervention, the mortality rate increases by 1%-2% in the first 48 hours. Thoracic aortic dissection typically presents with tearing chest, back, or abdominal pain. Coronavirus disease 2019 (COVID-19) is a viral disease caused by severe acute respiratory syndrome-coronavirus 2 (SARS-Cov2), which has been declared a pandemic by the World Health Organization (WHO) and usually manifests with respiratory symptoms, including cough, shortness of breath, flu-like symptoms, and fever. This case report highlights an important impact of the COVID-19 pandemic on the identification and management of aortic dissection in the emergency department. CASE REPORT: A 35-year-old Bahraini male, a suspected case of Marfan syndrome, presented with complaints of shortness of breath and worsening productive cough after returning from the United States (U.S). He denied any chest, back, or abdominal pain, dizziness, weakness in any limb, gait disturbance, headache, or change in vision. He was considered high risk for COVID-19 because of the recent travel and respiratory symptoms and was diagnosed incidentally with ascending aortic dissection along with a right lung consolidation. His SARS-Cov2 PCR came negative thrice during hospital stay, and he underwent elective cardiothoracic surgery. CONCLUSION: The COVID-19 pandemic has been a major stressor for the healthcare system worldwide, inflicting serious threats. Aortic dissection is one of the major life-threatening diseases that needs to be identified early on in the emergency department; however, in this case delayed diagnosis raised significant concerns due to underlying evolving triaging system for COVID-19 and atypical and overlapping clinical presentation. Further research is needed to look for COVID-19-associated factors, affecting the standard of care in the emergency department. Improving handover can directly impact patient care; therefore, it should be optimized.
RESUMO
Genetic mutations associated with brain malformations can lead to a spectrum of severity and it is often difficult to determine whether there are additional pathogenic variants contributing to the phenotype. Here, we present a family affected by a severe brain malformation including bilateral polymicrogyria, hydrocephalus, patchy white matter signal changes, and cerebellar and pontine hypoplasia with elongated cerebellar peduncles leading to the molar tooth sign. While the malformation is reminiscent of bilateral frontoparietal polymicrogyria (BFPP), the phenotype is more severe than previously reported and also includes features of Joubert syndrome (JBTS). Via exome sequencing, we identified homozygous truncating mutations in both ADGRG1/GPR56 and KIAA0556, which are known to cause BFPP and mild brain-specific JBTS, respectively. This study shows how two independent mutations can interact leading to complex brain malformations.
Assuntos
Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Anormalidades do Olho/genética , Hidrocefalia/genética , Doenças Renais Císticas/genética , Proteínas Associadas aos Microtúbulos/genética , Polimicrogiria/genética , Receptores Acoplados a Proteínas G/genética , Retina/anormalidades , Criança , Exoma , Saúde da Família , Feminino , Homozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Mesencéfalo/patologia , Mutação , Linhagem , Fenótipo , Prosencéfalo/patologia , Análise de Sequência de DNA , Sudão , Substância Branca/patologia , Sequenciamento do Exoma , Adulto JovemRESUMO
Glutamatergic neurotransmission governs excitatory signaling in the mammalian brain, and abnormalities of glutamate signaling have been shown to contribute to both epilepsy and hyperkinetic movement disorders. The etiology of many severe childhood movement disorders and epilepsies remains uncharacterized. We describe a neurological disorder with epilepsy and prominent choreoathetosis caused by biallelic pathogenic variants in FRRS1L, which encodes an AMPA receptor outer-core protein. Loss of FRRS1L function attenuates AMPA-mediated currents, implicating chronic abnormalities of glutamatergic neurotransmission in this monogenic neurological disease of childhood.
Assuntos
Encefalopatias/genética , Epilepsia/genética , Hipercinese/genética , Proteínas de Membrana/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Transmissão Sináptica/fisiologia , Eletrofisiologia , Feminino , Humanos , Lactente , Masculino , Linhagem , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismoRESUMO
PURPOSE: Congenital microcephaly (CM) is an important birth defect with long term neurological sequelae. We aimed to perform detailed phenotypic and genomic analysis of patients with Mendelian forms of CM. METHODS: Clinical phenotyping, targeted or exome sequencing, and autozygome analysis. RESULTS: We describe 150 patients (104 families) with 56 Mendelian forms of CM. Our data show little overlap with the genetic causes of postnatal microcephaly. We also show that a broad definition of primary microcephaly -as an autosomal recessive form of nonsyndromic CM with severe postnatal deceleration of occipitofrontal circumference-is highly sensitive but has a limited specificity. In addition, we expand the overlap between primary microcephaly and microcephalic primordial dwarfism both clinically (short stature in >52% of patients with primary microcephaly) and molecularly (e.g., we report the first instance of CEP135-related microcephalic primordial dwarfism). We expand the allelic and locus heterogeneity of CM by reporting 37 novel likely disease-causing variants in 27 disease genes, confirming the candidacy of ANKLE2, YARS, FRMD4A, and THG1L, and proposing the candidacy of BPTF, MAP1B, CCNH, and PPFIBP1. CONCLUSION: Our study refines the phenotype of CM, expands its genetics heterogeneity, and informs the workup of children born with this developmental brain defect.
Assuntos
Microcefalia/genética , Microcefalia/fisiopatologia , Adulto , Criança , Pré-Escolar , Nanismo/genética , Feminino , Genômica/métodos , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Mutação/genética , Linhagem , Fenótipo , Sequenciamento do Exoma/métodosRESUMO
In the published version of this paper the author Neus Baena's name was incorrectly given as Neus Baena Diez. This has now been corrected in both the HTML and PDF versions of the paper.
RESUMO
PURPOSE: Establishing links between Mendelian phenotypes and genes enables the proper interpretation of variants therein. Autozygome, a rich source of homozygous variants, has been successfully utilized for the high throughput identification of novel autosomal recessive disease genes. Here, we highlight the utility of the autozygome for the high throughput confirmation of previously published tentative links to diseases. METHODS: Autozygome and exome analysis of patients with suspected Mendelian phenotypes. All variants were classified according to the American College of Medical Genetics and Genomics guidelines. RESULTS: We highlight 30 published candidate genes (ACTL6B, ADAM22, AGTPBP1, APC, C12orf4, C3orf17 (NEPRO), CENPF, CNPY3, COL27A1, DMBX1, FUT8, GOLGA2, KIAA0556, LENG8, MCIDAS, MTMR9, MYH11, QRSL1, RUBCN, SLC25A42, SLC9A1, TBXT, TFG, THUMPD1, TRAF3IP2, UFC1, UFM1, WDR81, XRCC2, ZAK) in which we identified homozygous likely deleterious variants in patients with compatible phenotypes. We also identified homozygous likely deleterious variants in 18 published candidate genes (ABCA2, ARL6IP1, ATP8A2, CDK9, CNKSR1, DGAT1, DMXL2, GEMIN4, HCN2, HCRT, MYO9A, PARS2, PLOD3, PREPL, SCLT1, STX3, TXNRD2, WIPI2) although the associated phenotypes are sufficiently different from the original reports that they represent phenotypic expansion or potentially distinct allelic disorders. CONCLUSIONS: Our results should facilitate the timely relabeling of these candidate disease genes in relevant databases to improve the yield of clinical genomic sequencing.
Assuntos
Doença/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , Variação Biológica da População/genética , Criança , Pré-Escolar , Diagnóstico , Técnicas e Procedimentos Diagnósticos , Feminino , Testes Genéticos/normas , Variação Genética , Genótipo , Hereditariedade/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , FenótipoRESUMO
OBJECTIVE: To review the experience of 2 tertiary centers in Saudi Arabia with intracranial hypertension (IH) in the pediatric population. METHODS: We retrospectively reviewed and analyzed pediatric patients diagnosed with IH from June 2002 to May 2017 in 2 institutes. RESULTS: We identified 53 patients (30 females and 23 males) with a mean age of 7 years at the time of presentation. Among them, 41 patients were younger than 12 years, and 12 were older. Obese and overweight patients constituted 27.00% (n = 14) of all cases, 8 (66.7%) of whom were older than 12 years. The most common presenting feature was papilledema followed by headache. Vitamin D deficiency, which constituted the most common associated condition, was identified in 12 (22.6%) patients. Acetazolamide was the treatment option in 98.11% of patients, and only 5.7% underwent surgical interventions. The length of follow-up ranged from 6 months to 8 years. CONCLUSION: Intracranial hypertension is rare in children and commonly seen in overweight females older than 12 years similar to adults. Patients younger than 12 years tend to develop secondary IH. More studies are needed to characterize the clinical presentation and guide the management plan.
Assuntos
Cefaleia/epidemiologia , Hipertensão Intracraniana/complicações , Obesidade/epidemiologia , Papiledema/epidemiologia , Deficiência de Vitamina D/epidemiologia , Acetazolamida/uso terapêutico , Criança , Pré-Escolar , Diuréticos/uso terapêutico , Feminino , Hospitais Pediátricos/estatística & dados numéricos , Humanos , Lactente , Hipertensão Intracraniana/tratamento farmacológico , Hipertensão Intracraniana/epidemiologia , Hipertensão Intracraniana/patologia , Masculino , Arábia Saudita , Centros de Atenção Terciária/estatística & dados numéricosRESUMO
Adams-Oliver syndrome (AOS) is a rare developmental disorder, characterized by scalp aplasia cutis congenita (ACC) and transverse terminal limb defects (TTLD). Autosomal dominant forms of AOS are linked to mutations in ARHGAP31, DLL4, NOTCH1 or RBPJ, while DOCK6 and EOGT underlie autosomal recessive inheritance. Data on the frequency and distribution of mutations in large cohorts are currently limited. The purpose of this study was therefore to comprehensively examine the genetic architecture of AOS in an extensive cohort. Molecular diagnostic screening of 194 AOS/ACC/TTLD probands/families was conducted using next-generation and/or capillary sequencing analyses. In total, we identified 63 (likely) pathogenic mutations, comprising 56 distinct and 22 novel mutations, providing a molecular diagnosis in 30% of patients. Taken together with previous reports, these findings bring the total number of reported disease variants to 63, with a diagnostic yield of 36% in familial cases. NOTCH1 is the major contributor, underlying 10% of AOS/ACC/TTLD cases, with DLL4 (6%), DOCK6 (6%), ARHGAP31 (3%), EOGT (3%), and RBPJ (2%) representing additional causality in this cohort. We confirm the relevance of genetic screening across the AOS/ACC/TTLD spectrum, highlighting preliminary but important genotype-phenotype correlations. This cohort offers potential for further gene identification to address missing heritability.