RESUMO
We demonstrate a dual-wavelength Nd:YSAG ceramic laser in which the gain volume is structurated into two different regions providing gain at the wavelength of 1061 nm and 1064 nm respectively. We discuss the role of the nonuniform distribution of the temperature in structurating the gain region via the Boltzmann effect. We show that the two laser wavelengths can be switched by adjusting the size of the pump beam or by slightly modifying the geometrical parameters of the laser cavity, either the length of the cavity or the orientation of a mirror. Additionally, we demonstrate that the transverse modes at the two wavelengths are shaped according to the effect of gain filtering caused by the structuration of the gain region.
RESUMO
This study reports the fabrication of Nd:YAG (i.e., Neodymium-doped Yttrium Aluminum Garnet: Y3-xNdxAl5O12) transparent ceramics of a large size by the pressure slip-casting forming technique. Colloidal suspensions of primary oxides (i.e., Y2O3, Al2O3, Nd2O3, and SiO2 used as sintering aid) were cast under pressure through a porous membrane. Cakes with a good microstructural homogeneity and mean pore diameter of 90 nm were obtained. Modeling of the pressure slip-casting process at the millimetric to centimetric scale based on a computational fluid dynamics simulation showed good agreement with experimental results in terms of the casting kinetics (i.e., cake thickness and fluid flow as a function of time) and cake permeability. As a result, it was possible to better manage pressure casting parameters in order to obtain large size and homogeneous green parts. Finally, transparent Nd:YAG ceramics sintered by vacuum sintering, followed by post-sintering treatment by Hot Isostatic Pressing (HIP), demonstrated laser slope efficiency (51.7%) and optical-to-optical efficiency (44%) with 130 mJ of output laser energy at 1064 nm equivalent to commercial single crystals.