Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(9): 2336-2341.e5, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38582080

RESUMO

The Genome Aggregation Database (gnomAD), widely recognized as the gold-standard reference map of human genetic variation, has largely overlooked tandem repeat (TR) expansions, despite the fact that TRs constitute ∼6% of our genome and are linked to over 50 human diseases. Here, we introduce the TR-gnomAD (https://wlcb.oit.uci.edu/TRgnomAD), a biobank-scale reference of 0.86 million TRs derived from 338,963 whole-genome sequencing (WGS) samples of diverse ancestries (39.5% non-European samples). TR-gnomAD offers critical insights into ancestry-specific disease prevalence using disparities in TR unit number frequencies among ancestries. Moreover, TR-gnomAD is able to differentiate between common, presumably benign TR expansions, which are prevalent in TR-gnomAD, from those potentially pathogenic TR expansions, which are found more frequently in disease groups than within TR-gnomAD. Together, TR-gnomAD is an invaluable resource for researchers and physicians to interpret TR expansions in individuals with genetic diseases.


Assuntos
Genoma Humano , Sequências de Repetição em Tandem , Humanos , Sequências de Repetição em Tandem/genética , Sequenciamento Completo do Genoma , Bases de Dados Genéticas , Expansão das Repetições de DNA/genética , Estudo de Associação Genômica Ampla
2.
Cell ; 172(1-2): 218-233.e17, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29249357

RESUMO

Signaling pathways that promote adipose tissue thermogenesis are well characterized, but the limiters of energy expenditure are largely unknown. Here, we show that ablation of the anti-inflammatory cytokine IL-10 improves insulin sensitivity, protects against diet-induced obesity, and elicits the browning of white adipose tissue. Mechanistic studies define bone marrow cells as the source of the IL-10 signal and adipocytes as the target cell type mediating these effects. IL-10 receptor alpha is highly enriched in mature adipocytes and is induced in response to differentiation, obesity, and aging. Assay for transposase-accessible chromatin sequencing (ATAC-seq), ChIP-seq, and RNA-seq reveal that IL-10 represses the transcription of thermogenic genes in adipocytes by altering chromatin accessibility and inhibiting ATF and C/EBPß recruitment to key enhancer regions. These findings expand our understanding of the relationship between inflammatory signaling pathways and adipose tissue function and provide insight into the physiological control of thermogenesis that could inform future therapy.


Assuntos
Adipócitos/metabolismo , Montagem e Desmontagem da Cromatina , Metabolismo Energético , Interleucina-10/metabolismo , Termogênese , Fatores Ativadores da Transcrição/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Linhagem Celular , Células Cultivadas , Interleucina-10/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
3.
Trends Genet ; 38(2): 182-193, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34294427

RESUMO

Epigenetic modifications occur on genomic DNA and histones to influence gene expression. More recently, the discovery that mRNA undergoes similar chemical modifications that powerfully impact transcript turnover and translation adds another layer of dynamic gene regulation. Central to precise and synchronized regulation of gene expression is intricate crosstalk between multiple checkpoints involved in transcript biosynthesis and processing. There are more than 100 internal modifications of RNA in mammalian cells. The most common is N6-methyladenosine (m6A) methylation. Although m6A is established to influence RNA stability dynamics and translation efficiency, rapidly accumulating evidence shows significant crosstalk between RNA methylation and histone/DNA epigenetic mechanisms. These interactions specify transcriptional outputs, translation, recruitment of chromatin modifiers, as well as the deployment of the m6A methyltransferase complex (MTC) at target sites. In this review, we dissect m6A-orchestrated feedback circuits that regulate histone modifications and the activity of regulatory RNAs, such as long noncoding (lnc)RNA and chromosome-associated regulatory RNA. Collectively, this body of evidence suggests that m6A acts as a versatile checkpoint that can couple different layers of gene regulation with one another.


Assuntos
Epigênese Genética , RNA Longo não Codificante , Animais , Metilação de DNA , Regulação da Expressão Gênica/genética , Histonas/genética , Histonas/metabolismo , Metilação , RNA Longo não Codificante/metabolismo
4.
Nature ; 534(7605): 124-8, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251289

RESUMO

Liver X receptors (LXRs) are transcriptional regulators of cellular and systemic cholesterol homeostasis. Under conditions of excess cholesterol, LXR activation induces the expression of several genes involved in cholesterol efflux, facilitates cholesterol esterification by promoting fatty acid synthesis, and inhibits cholesterol uptake by the low-density lipoprotein receptor. The fact that sterol content is maintained in a narrow range in most cell types and in the organism as a whole suggests that extensive crosstalk between regulatory pathways must exist. However, the molecular mechanisms that integrate LXRs with other lipid metabolic pathways are incompletely understood. Here we show that ligand activation of LXRs in mouse liver not only promotes cholesterol efflux, but also simultaneously inhibits cholesterol biosynthesis. We further identify the long non-coding RNA LeXis as a mediator of this effect. Hepatic LeXis expression is robustly induced in response to a Western diet (high in fat and cholesterol) or to pharmacological LXR activation. Raising or lowering LeXis levels in the liver affects the expression of genes involved in cholesterol biosynthesis and alters the cholesterol levels in the liver and plasma. LeXis interacts with and affects the DNA interactions of RALY, a heterogeneous ribonucleoprotein that acts as a transcriptional cofactor for cholesterol biosynthetic genes in the mouse liver. These findings outline a regulatory role for a non-coding RNA in lipid metabolism and advance our understanding of the mechanisms that coordinate sterol homeostasis.


Assuntos
Colesterol/metabolismo , Homeostase/genética , Metabolismo dos Lipídeos/genética , Receptores Nucleares Órfãos/metabolismo , RNA Longo não Codificante/genética , Animais , Colesterol/biossíntese , Colesterol/sangue , Dieta Ocidental , Gorduras na Dieta/farmacologia , Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Homeostase/efeitos dos fármacos , Ligantes , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nucleares Órfãos/agonistas , RNA Longo não Codificante/biossíntese , Transdução de Sinais , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 40(2): 412-425, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31852219

RESUMO

OBJECTIVE: Atherosclerosis is a leading cause of death in developed countries. MicroRNAs act as fine-tuners of gene expression and have been shown to have important roles in the pathophysiology and progression of atherosclerosis. We, and others, previously demonstrated that microRNA-144 (miR-144) functions to post-transcriptionally regulate ABCA1 (ATP binding cassette transporter A1) and plasma HDL (high-density lipoprotein) cholesterol levels. Here, we explore how miR-144 inhibition may protect against atherosclerosis. Approach and Results: We demonstrate that miR-144 silencing reduced atherosclerosis in male, but not female low-density lipoprotein receptor null (Ldlr-/-) mice. MiR-144 antagonism increased circulating HDL cholesterol levels, remodeled the HDL particle, and enhanced reverse cholesterol transport. Notably, the effects on HDL and reverse cholesterol transport were more pronounced in male mice suggesting sex-specific differences may contribute to the effects of silencing miR-144 on atherosclerosis. As a molecular mechanism, we identify the oxysterol metabolizing enzyme CYP7B1 (cytochrome P450 enzyme 7B1) as a miR-144 regulated gene in male, but not female mice. Consistent with miR-144-dependent changes in CYP7B1 activity, we show decreased levels of 27-hydroxycholesterol, a known proatherogenic sterol and the endogenous substrate for CYP7B1 in male, but not female mice. CONCLUSIONS: Our data demonstrate silencing miR-144 has sex-specific effects and that treatment with antisense oligonucleotides to target miR-144 might result in enhancements in reverse cholesterol transport and oxysterol metabolism in patients with cardiovascular disease.


Assuntos
Aterosclerose/genética , Colesterol/metabolismo , Inativação Gênica , MicroRNAs/genética , RNA/genética , Animais , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Western Blotting , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/biossíntese , Fatores Sexuais
6.
Clin Infect Dis ; 70(8): 1764-1767, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-31414117

RESUMO

In a retrospective case control analysis, following adjustments for high-sensitivity C-reactive protein (hsCRP), traditional cardiovascular risk factors, and the CD4/CD8 T-cell ratio, higher lipopolysaccharide-binding protein (LBP) was associated with future myocardial infarctions in hsCRP human immunodeficiency virus (HIV). LBP may be a marker of cardiovascular risk with utility in HIV.


Assuntos
Infecções por HIV , Infarto do Miocárdio , Biomarcadores , Proteína C-Reativa/análise , HIV , Infecções por HIV/complicações , Humanos , Estudos Retrospectivos
7.
J Transl Med ; 18(1): 379, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028369

RESUMO

BACKGROUND: Electronic cigarette use is on the rise despite a number of reports linking electronic cigarettes with adverse health outcomes. Recent studies have suggested that alterations in lipid signaling may be one mechanism by which electronic cigarettes contribute to lung pulmonary function. Vitamin E acetate, for example, is synthetic form of Vitamin E transported via lipids, found to be associated with electronic cigarette associated lung injury. Lipids are absolutely critical for normal lung physiology and perturbations in a number of lipid pathways have been associated with respiratory illness. Is it conceivable that electronic cigarette use even in seemingly healthy cohorts are associated with alterations in lipid pathways? METHODS: To investigate quantitative alterations in the plasma lipidome associated with electronic cigarette use in healthy we obtained plasma samples from 119 male and female participants with who were either: (1) chronic tobacco cigarette (TC) smokers (> 12 months of self-reported TC use), (2) chronic Electronic cigarette (EC) users (> 12 months of self-reported EC use), or (3) non-users. We measured quantitative lipid species across different lipid sub-classes from plasma samples using the Sciex Lipidyzer. RESULTS: We found that male and female tobacco and electronic cigarette users had distinct lipidome signatures across a number of lipid species although the vast majority of lipids were unchanged when compared to non-users. Intriguingly, we found that female but not male electronic cigarette users had lower levels of plasmalogens, critical glycerophospholipids secreted by alveoli and required for normal surfactant function. CONCLUSIONS: In summary, our study does not reveal striking changes associated with electronic cigarette use but we observed sex-specific changes in lipids known to be critical for lung function.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Feminino , Humanos , Lipídeos , Masculino , Autorrelato , Vaping/efeitos adversos
8.
Circ Res ; 122(1): 155-166, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29301847

RESUMO

Despite significant improvements during the past 3 decades, cardiovascular disease remains a leading worldwide health epidemic. The recent identification of a fascinating group of mediators known as long noncoding RNAs (lncRNAs) has provided a wealth of new biology to explore for cardiovascular risk mitigation. lncRNAs are expressed in a highly context-specific fashion, and multiple lines of evidence implicated them in diverse biological processes. Indeed, abnormalities of lncRNAs have been directly linked with human ailments, including cardiovascular biology and disease. Of particular interest to the cardiovascular research community, dysregulation in lncRNA regulatory circuits have been associated with cardiac pathological hypertrophy, vascular disease, cell fate programming and development, atherosclerosis, dyslipidemia, and metabolic syndrome. Although techniques in interrogating noncoding RNAs are rapidly evolving, a major challenge in studying lncRNAs remains navigating through multiple technical constraints. In this review, we provide a road map for lncRNA discovery and interrogation in biological systems relevant to cardiovascular disease and highlight approaches to decipher their modes of action.


Assuntos
Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Código Genético/genética , Testes Genéticos/métodos , RNA Longo não Codificante/genética , Animais , Doenças Cardiovasculares/metabolismo , Testes Genéticos/tendências , Humanos , RNA Longo não Codificante/metabolismo
9.
Curr Opin Lipidol ; 30(5): 357-363, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31369409

RESUMO

PURPOSE OF REVIEW: This review addresses recent developments in studies of lipid regulation of calcific disease of arteries and cardiac valves, including the role of nuclear receptors. The role of lipid-soluble signals and their receptors is timely given the recent evidence and concerns that lipid-lowering treatment may increase the rate of progression of coronary artery calcification, which has been long associated with increased cardiovascular risk. Understanding the mechanisms will be important for interpreting such clinical information. RECENT FINDINGS: New findings support regulation of calcific vascular and valvular disease by nuclear receptors, including the vitamin D receptor, glucocorticoid receptor, nutrient-sensing nuclear receptors (liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors), and sex hormone (estrogen and androgen) receptors. There were two major unexpected findings: first, vitamin D supplementation, which was previously believed to prevent or reduce vascular calcification, showed no cardiovascular benefit in large randomized, controlled trials. Second, both epidemiological studies and coronary intravascular ultrasound studies suggest that treatment with HMG-CoA reductase inhibitors increases progression of coronary artery calcification, raising a question of whether there are mechanically stable and unstable forms of coronary calcification. SUMMARY: For clinical practice and research, these new findings offer new fundamental mechanisms for vascular calcification and provide new cautionary insights for therapeutic avenues.


Assuntos
Calcinose/genética , Doenças das Valvas Cardíacas/genética , Receptores Citoplasmáticos e Nucleares/genética , Calcificação Vascular/genética , Artérias/efeitos dos fármacos , Artérias/patologia , Calcinose/patologia , Doenças das Valvas Cardíacas/tratamento farmacológico , Doenças das Valvas Cardíacas/patologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Metabolismo dos Lipídeos/genética , Receptores X do Fígado/genética , Receptores Ativados por Proliferador de Peroxissomo/genética , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/patologia
13.
J Lipid Res ; 55(6): 1120-30, 2014 06.
Artigo em Inglês | MEDLINE | ID: mdl-24671012

RESUMO

The liver X receptors (LXRs) are members of the nuclear receptor superfamily that regulate sterol metabolism and inflammation. We sought to identify previously unknown genes regulated by LXRs in macrophages and to determine their contribution to atherogenesis. Here we characterize a novel LXR target gene, the lipopolysaccharide binding protein (LBP) gene. Surprisingly, the ability of LXRs to control LBP expression is cell-type specific, occurring in macrophages but not liver. Treatment of macrophages with oxysterols or loading with modified LDL induces LBP in an LXR-dependent manner, suggesting a potential role for LBP in the cellular response to cholesterol overload. To investigate this further, we performed bone marrow transplant studies. After 18 weeks of Western diet feeding, atherosclerotic lesion burden was assessed revealing markedly smaller lesions in the LBP(-/-) recipients. Furthermore, loss of bone marrow LBP expression increased apoptosis in atherosclerotic lesions as determined by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Supporting in vitro studies with isolated macrophages showed that LBP expression does not affect cholesterol efflux but promotes the survival of macrophages in the setting of cholesterol loading. The LBP gene is a macrophage-specific LXR target that promotes foam cell survival and atherogenesis.


Assuntos
Proteínas de Fase Aguda/metabolismo , Apoptose , Aterosclerose/metabolismo , Proteínas de Transporte/metabolismo , Células Espumosas/metabolismo , Receptores X do Fígado/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Fase Aguda/genética , Animais , Aterosclerose/genética , Aterosclerose/patologia , Proteínas de Transporte/genética , Sobrevivência Celular/genética , Células Espumosas/patologia , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Receptores X do Fígado/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout
14.
Cell Mol Life Sci ; 70(17): 3187-97, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23269436

RESUMO

Vascular calcification is a common feature of chronic kidney disease, cardiovascular disease, and aging. Such abnormal calcium deposition occurs in medial and/or intimal layers of blood vessels as well as in cardiac valves. Once considered a passive and inconsequential finding, the presence of calcium deposits in the vasculature is widely accepted as a predictor of increased morbidity and mortality. Recognition of the importance of vascular calcification in health is driving research into mechanisms that govern its development, progression, and regression. Diverse, but highly interconnected factors, have been implicated, including disturbances in lipid metabolism, oxidative stress, inflammatory cytokines, and mineral and hormonal balances, which can lead to formation of osteoblast-like cells in the artery wall. A tight balance of procalcific and anticalcific regulators dictates the extent of disease. In this review, we focus on the main regulatory circuits modulating vascular cell calcification.


Assuntos
Calcificação Vascular/fisiopatologia , Calcinose/fisiopatologia , Doenças Cardiovasculares/fisiopatologia , Humanos , Insuficiência Renal Crônica/fisiopatologia , Doenças Vasculares/fisiopatologia
15.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948798

RESUMO

Non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic-associated fatty liver disease (MAFLD), is the most common liver disease worldwide. The progression to fibrosis, occurring against a backdrop of hepatic steatosis and inflammation, critically determines liver-related morbidity and mortality. Inflammatory processes contribute to various stages of MAFLD and thought to instigate hepatic fibrosis. For this reason, targeting inflammation has been heavily nominated as a strategy to mitigate liver fibrosis. Lipopolysaccharide binding protein (LBP) is a secreted protein that plays an established role in innate immune responses. Here, using adoptive transfer studies and tissue-specific deletion models we show that hepatocytes are the dominant contributors to circulating LBP. In a murine model of MAFLD, hepatocyte-specific deletion of LBP restrained hepatic inflammation and improved liver function abnormalities, but not measures of fibrosis. Human studies, including genetic evidence, corroborate an important role for LBP in hepatic inflammation with minimal impact on fibrosis. Collectively, our data argues against the idea that targeting hepatic inflammation is a viable approach to reducing fibrosis.

17.
Trends Cardiovasc Med ; 33(3): 170-179, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34968676

RESUMO

Familial hypercholesterolemia is a highly prevalent but underdiagnosed disease marked by increased risk of cardiovascular morbidity and mortality. Aggressive reduction of LDL-cholesterol is a hallmark of cardiovascular risk mitigation in familial hypercholesterolemia. More recently, we have witnessed an expanded repertoire of pharmacologic agents that directly target LDL-cholesterol and/or reduce heart disease burden. In this state-of-the-art review, we explore the development, clinical efficacy and limitations of existing and potential future therapeutics in familial hypercholesterolemia.


Assuntos
Anticolesterolemiantes , Cardiopatias , Hiperlipoproteinemia Tipo II , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/genética , LDL-Colesterol , Resultado do Tratamento , Cardiopatias/induzido quimicamente , Fatores de Risco de Doenças Cardíacas , Anticolesterolemiantes/efeitos adversos
18.
J Clin Invest ; 133(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719373

RESUMO

Long noncoding RNAs (lncRNAs) have emerged as key mediators of regulated gene expression in diverse biologic contexts, including cardiovascular disease. In this issue of the JCI, Tang, Luo, and colleagues explored the contributions of lncRNAs in diabetic vasculopathy. The authors identified the lncRNA LEENE as a key mediator of angiogenesis and ischemic response. In a model of diabetic peripheral arterial disease, loss of LEENE led to impaired vascular perfusion, while its overexpression rescued the ischemic defect. The authors used unbiased chromatin affinity assays to decipher LEENE's interactome and mode of action. These findings offer insights as to why patients with diabetes are uniquely susceptible to developing peripheral vascular disease and fill important gaps in our understanding of mechanisms that connect metabolic dysregulation with impaired angiogenesis.


Assuntos
Angiopatias Diabéticas , Células Endoteliais , RNA Longo não Codificante , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
19.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909330

RESUMO

Interplay between energy-storing white adipose cells and thermogenic beige adipocytes contributes to obesity and insulin resistance. Irrespective of specialized niche, adipocytes require the activity of the nuclear receptor PPARγ for proper function. Exposure to cold or adrenergic signaling enriches thermogenic cells though multiple pathways that act synergistically with PPARγ; however, the molecular mechanisms by which PPARγ licenses white adipose tissue to preferentially adopt a thermogenic or white adipose fate in response to dietary cues or thermoneutral conditions are not fully elucidated. Here, we show that a PPARγ/long noncoding RNA (lncRNA) axis integrates canonical and noncanonical thermogenesis to restrain white adipose tissue heat dissipation during thermoneutrality and diet-induced obesity. Pharmacologic inhibition or genetic deletion of the lncRNA Lexis enhances uncoupling protein 1-dependent (UCP1-dependent) and -independent thermogenesis. Adipose-specific deletion of Lexis counteracted diet-induced obesity, improved insulin sensitivity, and enhanced energy expenditure. Single-nuclei transcriptomics revealed that Lexis regulates a distinct population of thermogenic adipocytes. We systematically map Lexis motif preferences and show that it regulates the thermogenic program through the activity of the metabolic GWAS gene and WNT modulator TCF7L2. Collectively, our studies uncover a new mode of crosstalk between PPARγ and WNT that preserves white adipose tissue plasticity.


Assuntos
Resistência à Insulina , RNA Longo não Codificante , Animais , Camundongos , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Resistência à Insulina/genética , Obesidade/genética , Obesidade/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética
20.
Catheter Cardiovasc Interv ; 80(7): 1228-31, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22419402

RESUMO

Coronary aneurysms and pseudoaneurysms have been described as rare complications following percutaneous coronary intervention (PCI). There is limited data available on the optimal treatment strategy for these conditions. Use of noninvasive techniques including covered stents has been described as a potential therapeutic strategy. We report a case of percutaneous coil embolization of two enlarging left anterior descending pseudoaneurysms arising as a complication of PCI.


Assuntos
Falso Aneurisma/terapia , Aneurisma Coronário/terapia , Embolização Terapêutica , Intervenção Coronária Percutânea/efeitos adversos , Idoso , Falso Aneurisma/diagnóstico por imagem , Falso Aneurisma/etiologia , Aneurisma Coronário/diagnóstico por imagem , Aneurisma Coronário/etiologia , Angiografia Coronária , Humanos , Masculino , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA