RESUMO
This study examined the efficiency of pumpkin seed oil (PSO) to rescue the colchicine (CHC)-induced adverse impacts on sperm characteristics, male sex hormones, testicular architecture, oxidative status, DNA content, collagen deposition, and immune expression of desmin and PCNA. Male Sprague Dawley rats were divided into four experimental groups (n = 10 each): control (distilled water), CHC (0.6 mg/kg b.wt), PSO (4 mL/kg b.wt), and CHC + PSO. After 60 days of dosing, CHC significantly reduced sperm motility (19%), sperm concentration (38%), estradiol (52%), testosterone (37%), luteinizing hormone (54%), and follicle-stimulating hormone (29%) compared to the control. Yet, the testicular tissues of CHC-administered rats exhibited elevated abnormal sperms (156%), malondialdehyde (354%), lactate dehydrogenase (73%), Caspase-3 (66%), and 8-hydroxyguanosine (65%) but lower reduced glutathione (74%), catalase (73%), and superoxide dismutase (78%) compared to the control group. Moreover, CHC induced testicular degeneration, distorted seminiferous tubules, apoptotic cells, exfoliated spermatogenic cells, reduced DNA content, decreased PCNA and desmin immune-expression, and increased collagen deposition. PSO effectively reversed the CHC-induced alterations in sperm quality and testicular function and architecture, likely through its antioxidant, antifibrotic, anti-apoptotic, and DNA-protective properties. These results suggest that PSO may be a beneficial intervention for long-term CHC users and may protect against CHC-induced male reproductive toxicity.
RESUMO
We evaluated whether thymol (THY) (30â¯mg/kg b.wt) could relieve the adverse effects of the neonicotinoid insecticide imidacloprid (IMD) (22.5â¯mg/kg b.wt) on the liver in a 56-day oral experiment and the probable underlying mechanisms. THY significantly suppressed the IMD-associated increase in hepatic enzyme leakage. Besides, the IMD-induced dyslipidemia was considerably corrected by THY. Moreover, THY significantly repressed the IMD-induced hepatic oxidative stress, lipid peroxidation, DNA damage, and inflammation. Of note, the Feulgen, mercuric bromophenol blue, and PAS-stained hepatic tissue sections analysis declared that treatment with THY largely rescued the IMD-induced depletion of the DNA, total proteins, and polysaccharides. Moreover, THY treatment did not affect the NF-kB p65 immunoexpression but markedly downregulated the Caspase-3 in the hepatocytes of the THY+IMD-treated group than the IMD-treated group. Conclusively, THY could efficiently protect against IMD-induced hepatotoxicity, probably through protecting cellular macromolecules and antioxidant, antiapoptotic, and anti-inflammatory activities.