Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39240258

RESUMO

Background: Left ventricular pressure overload (LVPO) can lead to heart failure with a preserved ejection fraction (HFpEF) and LV chamber stiffness (LV Kc) is a hallmark. This project tested the hypothesis that the development of HFpEF due to an LVPO stimulus, will alter post-transcriptional regulation, specifically microRNAs (miRs). Methods: LVPO was induced in pigs (n=9) by sequential ascending aortic cuff and age and weight matched pigs (n=6) served as controls. LV function was measured by echocardiography and LV Kc by speckle tracking. LV myocardial miRs were quantified using an 84 miR array. Treadmill testing and natriuretic peptide-A (NPPA) mRNA levels in controls and LVPO were performed (n=10, n=9, respectively). LV samples from LVPO and controls (n=6, respectively) were subjected to RNA sequencing. Results: LV mass and Kc increased by over 40% with LVPO (p<0.05). A total of 30 miRs shifted with LVPO of which 11 miRs correlated to LV Kc (p<0.05) which mapped to functional domains relevant to Kc such as fibrosis and calcium handling. LVPO resulted in reduced exercise tolerance (oxygen saturation, respiratory effort) and NPPA mRNA levels increased by 4-fold (p<0.05). RNA analysis identified several genes which mapped to specific miRs that were altered with LVPO. Conclusion: A specific set of miRs are changed in a large animal model consistent with the HFpEF phenotype, were related to LV stiffness properties and several miRs mapped to molecular pathways which may hold relevance in terms of prognosis and therapeutic targets.

2.
PLoS One ; 19(2): e0292243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306359

RESUMO

BACKGROUND: Standardized exercise protocols have been shown to improve overall cardiovascular fitness, but direct effects on left ventricular (LV) function, particularly diastolic function and relation to post-transcriptional molecular pathways (microRNAs (miRs)) are poorly understood. This project tested the central hypothesis that adaptive LV remodeling resulting from a large animal exercise training protocol, would be directly associated with specific miRs responsible for regulating pathways relevant to LV myocardial stiffness and geometry. METHODS AND RESULTS: Pigs (n = 9; 25 Kg) underwent a 4 week exercise training protocol (10 degrees elevation, 2.5 mph, 10 min, 5 days/week) whereby LV chamber stiffness (KC) and regional myocardial stiffness (rKm) were measured by Doppler/speckle tracking echocardiography. Age and weight matched non-exercise pigs (n = 6) served as controls. LV KC fell by approximately 50% and rKm by 30% following exercise (both p < 0.05). Using an 84 miR array, 34 (40%) miRs changed with exercise, whereby 8 of the changed miRs (miR-19a, miR-22, miR-30e, miR-99a, miR-142, miR-144, miR-199a, and miR-497) were correlated to the change in KC (r ≥ 0.5 p < 0.05) and mapped to matrix and calcium handling processes. Additionally, miR-22 and miR-30e decreased with exercise and mapped to a localized inflammatory process, the inflammasome (NLRP-3, whereby a 2-fold decrease in NLRP-3 mRNA occurred with exercise (p < 0.05). CONCLUSION: Chronic exercise reduced LV chamber and myocardial stiffness and was correlated to miRs that map to myocardial relaxation processes as well as local inflammatory pathways. These unique findings set the stage for utilization of myocardial miR profiling to identify underlying mechanisms by which exercise causes changes in LV myocardial structure and function.


Assuntos
Ventrículos do Coração , MicroRNAs , Suínos , Animais , Função Ventricular Esquerda , Diástole , Miocárdio , MicroRNAs/genética
3.
Med Res Arch ; 12(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38770116

RESUMO

Background: Obstructive sleep apnea (OSA) has been linked to cytokine-mediated chronic inflammatory states. Continuous positive airway pressure (CPAP) is an established therapy for OSA, but its effects on inflammation remain unclear. A recent study from our group identified soluble cytokine receptors altered in OSA patients and modified by CPAP adherence. However, the upstream regulatory pathways responsible for these shifts in proinflammatory cascades with OSA and CPAP therapy remained unknown. Accordingly, this study mapped OSA and CPAP-modulated soluble cytokine receptors to specific microRNAs and then tested the hypothesis that OSA and CPAP adherence shift cytokine-related microRNA expression profiles. Study Design: Plasma samples were collected from patients with OSA (n=50) at baseline and approximately 90 days after CPAP initiation and compared to referent control subjects (n=10). Patients with OSA were further divided into cohorts defined by adherence vs nonadherence to CPAP therapy. The microRNAs that mapped to soluble cytokine receptors of interest were subjected to quantitative polymerase chain reaction. Results: At baseline, increased hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-16-5p, hsa-miR-195-5p, hsa-miR-424-5p, hsa-miR-223-3p, and hsa-miR-223-5p were observed in patients with OSA compared to controls (p<0.05). In CPAP adherent patients (n=22), hsa-miR233-3p and hsa-miR233-5p decreased at follow-up (p<0.05) whereas there was no change in miR levels from baseline in non-adherent CPAP patients (n=28). The miRs hsa-miR233-3p and hsa-miR233-5p mapped to both proinflammatory and innate immunity activation; the inflammasome. Conclusion: A specific set of microRNAs, including hsa-miR233-3p and hsa-miR233-5p, may serve as a marker of inflammatory responses in patients with OSA, and be used to assess attenuation of inflammasome activation by CPAP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA