Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Pharmacol Ther ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837390

RESUMO

Africans are extremely underrepresented in global genomic research. African populations face high burdens of communicable and non-communicable diseases and experience widespread polypharmacy. As population-specific genetic studies are crucial to understanding unique genetic profiles and optimizing treatments to reduce medication-related complications in this diverse population, the present study aims to characterize the pharmacogenomics profile of a rural Ugandan population. We analyzed low-pass whole genome sequencing data from 1998 Ugandans to investigate 18 clinically actionable pharmacogenes in this population. We utilized PyPGx to identify star alleles (haplotype patterns) and compared allele frequencies across populations using the Pharmacogenomics Knowledgebase PharmGKB. Clinical interpretations of the identified alleles were conducted following established dosing guidelines. Over 99% of participants displayed actionable phenotypes across the 18 pharmacogenes, averaging 3.5 actionable genotypes per individual. Several variant alleles known to affect drug metabolism (i.e., CYP3A5*1, CYP2B6*9, CYP3A5*6, CYP2D6*17, CYP2D6*29, and TMPT*3C)-which are generally more prevalent in African individuals-were notably enriched in the Ugandan cohort, beyond reported frequencies in other African peoples. More than half of the cohort exhibited a predicted impaired drug response associated with CFTR, IFNL3, CYP2B6, and CYP2C19, and approximately 31% predicted altered CYP2D6 metabolism. Potentially impaired CYP2C9, SLCO1B1, TPMT, and DPYD metabolic phenotypes were also enriched in Ugandans compared with other African populations. Ugandans exhibit distinct allele profiles that could impact drug efficacy and safety. Our findings have important implications for pharmacogenomics in Uganda, particularly with respect to the treatment of prevalent communicable and non-communicable diseases, and they emphasize the potential of pharmacogenomics-guided therapies to optimize healthcare outcomes and precision medicine in Uganda.

2.
Front Pharmacol ; 14: 1180640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284308

RESUMO

Background: Population genomic studies of individuals of Indigenous ancestry have been extremely limited comprising <0.5% of participants in international genetic databases and genome-wide association studies, contributing to a "genomic gap" that limits their access to personalised medicine. While Indigenous Australians face a high burden of chronic disease and associated medication exposure, corresponding genomic and drug safety datasets are sorely lacking. Methods: To address this, we conducted a pharmacogenomic study of almost 500 individuals from a founder Indigenous Tiwi population. Whole genome sequencing was performed using short-read Illumina Novaseq6000 technology. We characterised the pharmacogenomics (PGx) landscape of this population by analysing sequencing results and associated pharmacological treatment data. Results: We observed that every individual in the cohort carry at least one actionable genotype and 77% of them carry at least three clinically actionable genotypes across 19 pharmacogenes. Overall, 41% of the Tiwi cohort were predicted to exhibit impaired CYP2D6 metabolism, with this frequency being much higher than that for other global populations. Over half of the population predicted an impaired CYP2C9, CYP2C19, and CYP2B6 metabolism with implications for the processing of commonly used analgesics, statins, anticoagulants, antiretrovirals, antidepressants, and antipsychotics. Moreover, we identified 31 potentially actionable novel variants within Very Important Pharmacogenes (VIPs), five of which were common among the Tiwi. We further detected important clinical implications for the drugs involved with cancer pharmacogenomics such as thiopurines and tamoxifen, immunosuppressants like tacrolimus and certain antivirals used in the hepatitis C treatment due to potential differences in their metabolic processing. Conclusion: The pharmacogenomic profiles generated in our study demonstrate the utility of pre-emptive PGx testing and have the potential to help guide the development and application of precision therapeutic strategies tailored to Tiwi Indigenous patients. Our research provides valuable insights on pre-emptive PGx testing and the feasibility of its use in ancestrally diverse populations, emphasizing the need for increased diversity and inclusivity in PGx investigations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA