Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36616590

RESUMO

Up to now, fiber-reinforced composites with thermoplastic matrix have seen limited fields of use in the structural scope due to their high viscosity in the molten state, which results in poor impregnability of the reinforcement, leading to mechanical properties of the finished product that are not comparable to those of thermosets. Although the latter still dominate the various sectors of automotive, aerospace, transportation and construction, new applications involving the production of thermoplastic composites are growing rapidly, offering new approaches to the solution of this problem. The aim of this work is to study and evaluate the state of the art on the manufacturing processes of thermoplastic matrix composite, analyzing the parameters that come into play and that most influence the process and material performance. The advantages of film stacking and powder impregnation techniques are contrasted by the versatility of hybrid fabrics and, at the same time, parameters such as pressure and temperature must be carefully considered. A description of different thermoplastic composite processes such as powder impregnation, film stacking molding, hybrid woven fabric, hybrid yarn and products follows, which represent the current possibilities to move from a thermosetting matrix composite to a thermoplastic one, upon which the concept of sustainability is based. This article wants to present an overview of research that has been done in manufacturing thermoplastic reinforced composites and will serve as a baseline and aid for further research and development efforts.

2.
Gels ; 9(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37102919

RESUMO

The traditional choice of insulation material for liquefied natural gas (LNG) transportation with cryogenic tankers is the back-filled perlite-based system. However, aiming to further cut down the insulation cost, spare additional arrangement space, and provide safety in installation and maintenance, the requirement of looking for alternative materials still exists. Fiber-reinforced aerogel blankets (FRABs) could represent good candidates in designing insulation layers for LNG cryogenic storage because of their ability to ensure adequate thermal performance without the need to create deep vacuum conditions in the annular space of the tank. In this work, a finite element method (FEM) model was developed to study the thermal insulation performance of a commercial FRAB (Cryogel ® Z) for application in cryogenic storage/transport LNG tanks, comparing it with the performance of traditional perlite-based systems. Within the reliability limits of the computational model, the analysis proved that FRAB insulation technology gave encouraging results and might be potentially scalable for transporting cryogenic liquid. In addition to demonstrating superior performance in terms of thermal insulating efficiency and boil-off rate over the perlite-based system, as far as a perspective of cost savings and space gain, FRAB technology allows for higher levels of insulation without vacuum and with lower thickness of the outer shell, which is therefore beneficial for storing more material and lightening the weight of the LNG transportation semitrailer.

3.
Gels ; 9(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38131967

RESUMO

A new hybrid fiber blend containing microfibrillated cellulose (MFC) gel and recycled carbon short fiber (RCSF) was implemented for designing fiber-reinforced cement mortars, to further improve the mechanical properties and enhance the sustainability of cement-based materials. The individual impact of single fibrous fillers as well as the synergistic effect of a hybrid fiber system (MFC + RCSF) were investigated in terms of the rheological properties, mechanical strength, and microstructure of the mortars. The results indicated that the workability of fresh mixtures slightly increased after fiber addition. The fibers incorporated alone improved the materials' performance in different ways. The addition of RCSF led to improvements of up to 76% in flexural strength and 13% in compression strength for a fiber content of 0.75 wt.%. However, the addition of carbon fibers led to slight deteriorations in terms of porosity and water absorption. On the other hand, the use of MFC induced a less significant growth in terms of mechanical strength (+14% in flexural strength for 0.75 wt.% of cellulose) but greatly improved the microstructural quality of the mortar, significantly reducing its water permeability. Considering the optimum MFC dosage, MFC+RCSF hybrid mixtures showed positive effects on the mechanical properties and microstructure of the mortar, displaying further improvements in strength, while preserving a lower porosity and water absorption than the control mix.

4.
Materials (Basel) ; 16(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570140

RESUMO

With a view to achieving sustainable development and a circular economy, this work focused on the possibility to valorize a secondary waste stream of recycled carbon fiber (rCF) to produce a 3D printing usable material with a PA6,6 polymer matrix. The reinforcing fibers implemented in the research are the result of a double-recovery action: starting with pyrolysis, long fibers are obtained, which are used to produce non-woven fabrics, and subsequently, fiber agglomerate wastes obtained from this last process are ground in a ball mill. The effect of different amounts of reinforcement at 5% and 10% by weight on the mechanical properties of 3D-printed thermoplastic composites was investigated. Although the recycled fraction was successfully integrated in the production of filaments for 3D printing and therefore in the production of specimens via the fused deposition modeling technique, the results showed that fibers did not improve the mechanical properties as expected, due to an unsuitable average size distribution and the presence of a predominant dusty fraction ascribed to the non-optimized ball milling process. PA6,6 + 10 wt.% rCF composites exhibited a tensile strength of 59.53 MPa and a tensile modulus of 2.24 GPa, which correspond to an improvement in mechanical behavior of 5% and 21% compared to the neat PA6,6 specimens, respectively. The printed composite specimens loaded with the lowest content of rCF provided the greatest improvement in strength (+9% over the neat sample). Next, a prediction of the "optimum" critical length of carbon fibers was proposed that could be used for future optimization of recycled fiber processing.

5.
Materials (Basel) ; 14(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947089

RESUMO

The use of waste materials as alternative aggregates in cementitious mixtures is one of the most investigated practices to enhance eco-sustainability in the civil and construction sectors. For specific applications, these secondary raw materials can ensure adequate technological performance, minimizing the exploitation of natural resources and encouraging the circular disposal of industrial or municipal waste. Aiming to design and develop lightweight paving blocks for pedestrian or very light-traffic purposes (parking area, garage, sidewalk, or sports surfaces), this paper presents the material characterization of rubberized cement mortars using ground waste tire rubber (0-1 mm rubber powder and 1-3 mm rubber granules) to totally replace the mineral aggregates. Considering recommended requirements for concrete paving members in terms of mechanical strength, water drainage performance, acoustic attenuation, and dynamic and energy absorption behavior, a comprehensive laboratory testing is proposed for five different formulations varying the sand-rubber replacement level and the proportion ratio between the two rubber fractions. Tests highlighted positive and promising results to convert laboratory samples into pre-cast members. The "hot" finding of the work was to prove the feasibility of obtaining totally rubberized mortars (0 v/v% of sand) with suitable engineering performance and enhanced eco-friendly features.

6.
Nanomaterials (Basel) ; 11(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34443838

RESUMO

In the direction of reducing greenhouse emissions and energy consumption related to the activities of the cement and concrete industry, the increasingly popular concept of eco-sustainability is leading to the development and optimization of new technologies and low impact construction materials. In this respect, geopolymers are spreading more and more in the cementitious materials field, exhibiting technological properties that are highly competitive to conventional Portland concrete mixes. In this paper, the mix design, mechanical properties, microstructural features, and mineralogical properties of geopolymer mixes are discussed, investigating the influence of the main synthesis parameters (curing regime, type of precursors, activator molarity, mix design) on the performance of the final product. Moreover, recent developments of geopolymer technology based on the integration of functional nanofillers are reported. The novelty of the manuscript is to provide a detailed collection of past and recent comparative studies between geopolymers and ordinary Portland concrete mixes in terms of strength properties, durability, fire resistance, and environmental impact by LCA analysis, intending to evaluate the advantages and limitations of this technology and direct research towards a targeted optimization of the material.

7.
Polymers (Basel) ; 13(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34451290

RESUMO

This work aims to synthesize biocompatible composite materials loaded with recycled porcine bone powder (BP) to fabricate scaffolds for in-situ reconstruction of bone structures. Polylactic acid (PLA) and poly(ε-caprolactone) (PCL) were tested as matrices in percentages from 40 wt% to 80 wt%. Chitosan (CS) was selected for its antibacterial properties, in the amount from 5 wt% to 15 wt%, and BP from 20 wt% to 50 wt% as active filler to promote osseointegration. In this preliminary investigation, samples have been produced by solvent casting to introduce the highest possible percentage of fillers. PCL has been chosen as a matrix due to its greater ability to incorporate fillers, ensuring their adequate dispersion and lower working temperatures compared to PLA. Tensile tests demonstrated strength properties (6-10 MPa) suitable for hard tissue engineering applications. Based on the different findings (integration of PLA in the composite system, improvements in CS adhesion and mechanical properties), the authors supposed an optimization of the synthesis process, focused on the possible implementation of the electrospinning technique to develop PCL-BP composites reinforced with PLA-CS microfibers. Finally, biological tests were conducted to evaluate the antibacterial activity of CS, demonstrating the applicability of the materials for the biomedical field.

8.
Foods ; 10(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681489

RESUMO

A multidisciplinary protocol is proposed to monitor the preservation of fresh pumpkin samples (FP) using three commercial polymeric films: A made of biodegradable cellophane from regenerated cellulose pulp; B from corn starch, cassava and eucalyptus, C made of polylactic acid from corn starch, and a polyethylene film used as reference (REF). Chemical, mechanical and microbiological analyses were applied on packaging and fresh and packaged samples at different times. After an 11-day period, NMR spectroscopy results showed a sucrose increase and a malic acid decrease in all the biofilms with respect to FP; fructose, glucose, galactose levels remained quite constant in biofilms B and C; the most abundant amino acids remained quite constant in biofilm A and decreased significantly in biofilm B. From microbiological analyses total microbial count was below the threshold value up to 7 days for samples in all the films, and 11 days for biofilm C. The lactic acid bacteria, and yeasts and molds counts were below the acceptability limit during the 11 days for all packages. In the case of biofilm C, the most promising packaging for microbiological point of view, aroma analysis was also carried out. In this paper, you can find all the analysis performed and all the values found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA