Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(36): 22051-22060, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839343

RESUMO

Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase with important functions in organogenesis and tissue homeostasis. Aberrant DDR1 activity contributes to the progression of human diseases, including fibrosis and cancer. How DDR1 activity is regulated is poorly understood. We investigated the function of the long intracellular juxtamembrane (JM) region of human DDR1 and found that the kinase-proximal segment, JM4, is an important regulator of kinase activity. Crystal structure analysis revealed that JM4 forms a hairpin that penetrates the kinase active site, reinforcing autoinhibition by the activation loop. Using in vitro enzymology with soluble kinase constructs, we established that release from autoinhibition occurs in two distinct steps: rapid autophosphorylation of the JM4 tyrosines, Tyr569 and Tyr586, followed by slower autophosphorylation of activation loop tyrosines. Mutation of JM4 tyrosines abolished collagen-induced DDR1 activation in cells. The insights may be used to develop allosteric, DDR1-specific, kinase inhibitors.


Assuntos
Receptor com Domínio Discoidina 1/química , Receptor com Domínio Discoidina 1/metabolismo , Motivos de Aminoácidos , Domínio Catalítico , Colágeno/metabolismo , Receptor com Domínio Discoidina 1/genética , Regulação Enzimológica da Expressão Gênica , Humanos , Fosforilação , Domínios Proteicos
2.
Nat Chem Biol ; 16(4): 423-429, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31907373

RESUMO

The most abundant member of the collagen protein family, collagen I (also known as type I collagen; COL1), is composed of one unique (chain B) and two similar (chain A) polypeptides that self-assemble with one amino acid offset into a heterotrimeric triple helix. Given the offset, chain B can occupy either the leading (BAA), middle (ABA) or trailing (AAB) position of the triple helix, yielding three isomeric biomacromolecules with different protein recognition properties. Despite five decades of intensive research, there is no consensus on the position of chain B in COL1. Here, three triple-helical heterotrimers that each contain a putative von Willebrand factor (VWF) and discoidin domain receptor (DDR) recognition sequence from COL1 were designed with chain B permutated in all three positions. AAB demonstrated a strong preference for both VWF and DDR, and also induced higher levels of cellular DDR phosphorylation. Thus, we resolve this long-standing mystery and show that COL1 adopts an AAB register.


Assuntos
Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Colágeno/química , Sequência de Aminoácidos , Aminoácidos , Colágeno/metabolismo , Biologia Computacional/métodos , Humanos , Modelos Moleculares , Peptídeos/química , Conformação Proteica
3.
Wellcome Open Res ; 8: 76, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234743

RESUMO

Background: Hyaluronic acid (HA) is a major polysaccharide component of the extracellular matrix. HA has essential functions in tissue architecture and the regulation of cell behaviour. HA turnover needs to be finely balanced. Increased HA degradation is associated with cancer, inflammation, and other pathological situations. Transmembrane protein 2 (TMEM2) is a cell surface protein that has been reported to degrade HA into ~5 kDa fragments and play an essential role in systemic HA turnover. Methods: We produced the soluble TMEM2 ectodomain (residues 106-1383; sTMEM2) in human embryonic kidney cells (HEK293) and determined its structure using X-ray crystallography. We tested sTMEM2 hyaluronidase activity using fluorescently labelled HA and size fractionation of reaction products. We tested HA binding in solution and using a glycan microarray. Results: Our crystal structure of sTMEM2 confirms a remarkably accurate prediction by AlphaFold. sTMEM2 contains a parallel ß-helix typical of other polysaccharide-degrading enzymes, but an active site cannot be assigned with confidence. A lectin-like domain is inserted into the ß-helix and predicted to be functional in carbohydrate binding. A second lectin-like domain at the C-terminus is unlikely to bind carbohydrates. We did not observe HA binding in two assay formats, suggesting a modest affinity at best. Unexpectedly, we were unable to observe any HA degradation by sTMEM2. Our negative results set an upper limit for k cat of approximately 10 -5 min -1. Conclusions: Although sTMEM2 contains domain types consistent with its suggested role in TMEM2 degradation, its hyaluronidase activity was undetectable. HA degradation by TMEM2 may require additional proteins and/or localisation at the cell surface.

4.
Nat Commun ; 14(1): 6425, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37828045

RESUMO

Two major glycosaminoglycan types, heparan sulfate (HS) and chondroitin sulfate (CS), control many aspects of development and physiology in a type-specific manner. HS and CS are attached to core proteins via a common linker tetrasaccharide, but differ in their polymer backbones. How core proteins are specifically modified with HS or CS has been an enduring mystery. By reconstituting glycosaminoglycan biosynthesis in vitro, we establish that the CS-initiating N-acetylgalactosaminyltransferase CSGALNACT2 modifies all glycopeptide substrates equally, whereas the HS-initiating N-acetylglucosaminyltransferase EXTL3 is selective. Structure-function analysis reveals that acidic residues in the glycopeptide substrate and a basic exosite in EXTL3 are critical for specifying HS biosynthesis. Linker phosphorylation by the xylose kinase FAM20B accelerates linker synthesis and initiation of both HS and CS, but has no effect on the subsequent polymerisation of the backbone. Our results demonstrate that modification with CS occurs by default and must be overridden by EXTL3 to produce HS.


Assuntos
Sulfatos de Condroitina , Glicosaminoglicanos , Glicosaminoglicanos/metabolismo , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/química , Fosforilação , Glicopeptídeos/metabolismo
5.
SLAS Discov ; 25(2): 163-175, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31875412

RESUMO

Malfunctions in the basic epigenetic mechanisms such as histone modifications, DNA methylation, and chromatin remodeling are implicated in a number of cancers and immunological and neurodegenerative conditions. Within GlaxoSmithKline (GSK) we have utilized a number of variations of the NanoBRET technology for the direct measurement of compound-target engagement within native cellular environments to drive high-throughput, routine structure-activity relationship (SAR) profiling across differing epigenetic targets. NanoBRET is a variation of the bioluminescence resonance energy transfer (BRET) methodology utilizing proteins of interest fused to either NanoLuc, a small, high-emission-intensity luciferase, or HaloTag, a modified dehalogenase enzyme that can be selectively labeled with a fluorophore. The combination of these two technologies has enabled the application of NanoBRET to biological systems such as epigenetic protein-protein interactions, which have previously been challenging. By synergizing target engagement assays with more complex primary cell phenotypic assays, we have been able to demonstrate compound-target selectivity profiles to enhance cellular potency and offset potential liability risks. Additionally, we have shown that in the absence of a robust, cell phenotypic assay, it is possible to utilize NanoBRET target engagement assays to aid chemistry in progressing at a higher scale than would have otherwise been achievable. The NanoBRET target engagement assays utilized have further shown an excellent correlation with more reductionist biochemical and biophysical assay systems, clearly demonstrating the possibility of using such assay systems at scale, in tandem with, or in preference to, lower-throughput cell phenotypic approaches.


Assuntos
Bioensaio , Epigênese Genética/genética , Relação Estrutura-Atividade , Montagem e Desmontagem da Cromatina/genética , Metilação de DNA/genética , Transferência Ressonante de Energia de Fluorescência , Código das Histonas/genética , Humanos , Luciferases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA