Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Exp Immunol ; 216(2): 172-191, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38387476

RESUMO

Chronic immune activation from persistent malaria infections can induce immunophenotypic changes associated with T-cell exhaustion. However, associations between T and B cells during chronic exposure remain undefined. We analyzed peripheral blood mononuclear cells from malaria-exposed pregnant women from Papua New Guinea and Spanish malaria-naïve individuals using flow cytometry to profile T-cell exhaustion markers phenotypically. T-cell lineage (CD3, CD4, and CD8), inhibitory (PD1, TIM3, LAG3, CTLA4, and 2B4), and senescence (CD28-) markers were assessed. Dimensionality reduction methods revealed increased PD1, TIM3, and LAG3 expression in malaria-exposed individuals. Manual gating confirmed significantly higher frequencies of PD1+CD4+ and CD4+, CD8+, and double-negative (DN) T cells expressing TIM3 in malaria-exposed individuals. Increased frequencies of T cells co-expressing multiple markers were also found in malaria-exposed individuals. T-cell data were analyzed with B-cell populations from a previous study where we reported an alteration of B-cell subsets, including increased frequencies of atypical memory B cells (aMBC) and reduction in marginal zone (MZ-like) B cells during malaria exposure. Frequencies of aMBC subsets and MZ-like B cells expressing CD95+ had significant positive correlations with CD28+PD1+TIM3+CD4+ and DN T cells and CD28+TIM3+2B4+CD8+ T cells. Frequencies of aMBC, known to associate with malaria anemia, were inversely correlated with hemoglobin levels in malaria-exposed women. Similarly, inverse correlations with hemoglobin levels were found for TIM3+CD8+ and CD28+PD1+TIM3+CD4+ T cells. Our findings provide further insights into the effects of chronic malaria exposure on circulating B- and T-cell populations, which could impact immunity and responses to vaccination.

2.
J Immunol ; 194(7): 3275-85, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25725110

RESUMO

Pregnancy triggers immunological changes aimed to tolerate the fetus. However, it has not been properly addressed whether similar changes occur in tropical areas with high infection pressure and whether these changes render women more susceptible to infectious diseases. We compared the frequencies of T cell subsets, including regulatory T cells, in pregnant and nonpregnant women from Papua New Guinea, a high malaria transmission area, and from Spain, a malaria-free country. We also assessed the relationship among these cellular subsets, malaria infection, and delivery outcomes. CD4(+)FOXP3(+)CD127(low) T cells (Tregs) were decreased in pregnant women in both countries but were not associated with malaria infection or poor delivery outcomes. An expansion of IFN-γ-producing cells and intracytoplasmic IFN-γ levels was found in pregnant compared with nonpregnant women only in Papua New Guinea. Increased CD4(+)IL-10(+)IFN-γ(+) frequencies and Treg-IFN-γ production were found in women with current Plasmodium falciparum infection. Higher CD4(+)IL-10(-)IFN-γ(+) T cells frequencies and production of proinflammatory cytokines (including TNF and IL-2) at recruitment (first antenatal visit) had a protective association with birth weight and future (delivery) P. falciparum infection, respectively. Higher intracellular IL-10 levels in T cells had a protective association with future P. falciparum infection and hemoglobin levels at delivery. The protective associations were found also with nonmalaria-specific T cell responses. Treg frequencies positively correlated with plasma eotaxin concentrations, but this subset did not express eotaxin receptor CCR3. Thus, an activated immune system during pregnancy might contribute to protection against malaria during pregnancy and poor delivery outcomes.


Assuntos
Mediadores da Inflamação/metabolismo , Interleucina-10/metabolismo , Malária/imunologia , Malária/metabolismo , Plasmodium falciparum/imunologia , Complicações Parasitárias na Gravidez , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto , Antígenos de Superfície/metabolismo , Estudos de Casos e Controles , Quimiocinas/sangue , Quimiocinas/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Feminino , Humanos , Imunofenotipagem , Contagem de Linfócitos , Malária/prevenção & controle , Masculino , Plasmodium falciparum/genética , Gravidez , Resultado da Gravidez , Fatores de Risco , Espanha , Adulto Jovem
3.
J Immunol ; 193(6): 2971-83, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25135831

RESUMO

Pregnancy triggers immunological changes aimed to tolerate the fetus, but its impact on B lymphocytes is poorly understood. In addition, exposure to the Plasmodium parasite is associated with altered distribution of peripheral memory B cell (MBC) subsets. To study the combined impact of high malaria exposure and pregnancy in B cell subpopulations, we analyzed PBMCs from pregnant and nonpregnant individuals from a malaria-nonendemic country (Spain) and from a high malaria-endemic country (Papua New Guinea). In the malaria-naive cohorts, pregnancy was associated with a significant expansion of all switched (IgD(-)) MBC and a decrease of naive B cells. Malaria-exposed women had more atypical MBC and fewer marginal zone-like MBC, and their levels correlated with both Plasmodium vivax- and Plasmodium falciparum-specific plasma IgG levels. Classical but not atypical MBC were increased in P. falciparum infections. Moreover, active atypical MBC positively correlated with proinflammatory cytokine plasma concentrations and had lower surface IgG levels than the average. Decreased plasma eotaxin (CCL11) levels were associated with pregnancy and malaria exposure and also correlated with B cell subset frequencies. Additionally, active atypical and active classical MBC expressed higher levels of eotaxin receptor CCR3 than the other B cell subsets, suggesting a chemotactic effect of eotaxin on these B cell subsets. These findings are important to understand immunity to infections like malaria that result in negative outcomes for both the mother and the newborn and may have important implications on vaccine development.


Assuntos
Subpopulações de Linfócitos B/imunologia , Quimiocina CCL11/sangue , Malária/imunologia , Plasmodium falciparum/imunologia , Plasmodium vivax/imunologia , Adulto , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Feminino , Humanos , Imunoglobulina D/biossíntese , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Memória Imunológica , Interleucina-8/sangue , Contagem de Linfócitos , Malária/parasitologia , Papua Nova Guiné , Gravidez , Receptores CCR3/sangue , Espanha
4.
BMC Med ; 13: 9, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25591391

RESUMO

BACKGROUND: Intermittent preventive treatment in pregnancy has not been evaluated outside of Africa. Low birthweight (LBW, <2,500 g) is common in Papua New Guinea (PNG) and contributing factors include malaria and reproductive tract infections. METHODS: From November 2009 to February 2013, we conducted a parallel group, randomised controlled trial in pregnant women (≤ 26 gestational weeks) in PNG. Sulphadoxine-pyrimethamine (1,500/75 mg) plus azithromycin (1 g twice daily for 2 days) (SPAZ) monthly from second trimester (intervention) was compared against sulphadoxine-pyrimethamine and chloroquine (450 to 600 mg, daily for three days) (SPCQ) given once, followed by SPCQ placebo (control). Women were assigned to treatment (1:1) using a randomisation sequence with block sizes of 32. Participants were blinded to assignments. The primary outcome was LBW. Analysis was by intention-to-treat. RESULTS: Of 2,793 women randomised, 2,021 (72.4%) were included in the primary outcome analysis (SPCQ: 1,008; SPAZ: 1,013). The prevalence of LBW was 15.1% (305/2,021). SPAZ reduced LBW (risk ratio [RR]: 0.74, 95% CI: 0.60-0.91, P = 0.005; absolute risk reduction (ARR): 4.5%, 95% CI: 1.4-7.6; number needed to treat: 22), and preterm delivery (0.62, 95% CI: 0.43-0.89, P = 0.010), and increased mean birthweight (41.9 g, 95% CI: 0.2-83.6, P = 0.049). SPAZ reduced maternal parasitaemia (RR: 0.57, 95% CI: 0.35-0.95, P = 0.029) and active placental malaria (0.68, 95% CI: 0.47-0.98, P = 0.037), and reduced carriage of gonorrhoea (0.66, 95% CI: 0.44-0.99, P = 0.041) at second visit. There were no treatment-related serious adverse events (SAEs), and the number of SAEs (intervention 13.1% [181/1,378], control 12.7% [174/1,374], P = 0.712) and AEs (intervention 10.5% [144/1,378], control 10.8% [149/1,374], P = 0.737) was similar. A major limitation of the study was the high loss to follow-up for birthweight. CONCLUSIONS: SPAZ was efficacious and safe in reducing LBW, possibly acting through multiple mechanisms including the effect on malaria and on sexually transmitted infections. The efficacy of SPAZ in the presence of resistant parasites and the contribution of AZ to bacterial antibiotic resistance require further study. The ability of SPAZ to improve pregnancy outcomes warrants further evaluation. TRIAL REGISTRATION: ClinicalTrials.gov NCT01136850 (06 April 2010).


Assuntos
Antimaláricos/administração & dosagem , Azitromicina/administração & dosagem , Recém-Nascido de Baixo Peso , Malária/prevenção & controle , Complicações Parasitárias na Gravidez/prevenção & controle , Pirimetamina/administração & dosagem , Sulfadoxina/administração & dosagem , Adulto , Cloroquina/administração & dosagem , Combinação de Medicamentos , Feminino , Humanos , Recém-Nascido , Malária/complicações , Papua Nova Guiné , Gravidez , Método Simples-Cego , Adulto Jovem
6.
Front Immunol ; 8: 966, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28878766

RESUMO

In persistent infections that are accompanied by chronic immune activation, such as human immunodeficiency virus, hepatitis C virus, and malaria, there is an increased frequency of a phenotypically distinct subset of memory B cells lacking the classic memory marker CD27 and showing a reduced capacity to produce antibodies. However, critical knowledge gaps remain on specific B cell changes and immune adaptation in chronic infections. We hypothesized that expansion of atypical memory B cells (aMBCs) and reduction of activated peripheral marginal zone (MZ)-like B cells in constantly exposed individuals might be accompanied by phenotypic changes that would confer a tolerogenic profile, helping to establish tolerance to infections. To better understand malaria-associated phenotypic abnormalities on B cells, we analyzed peripheral blood mononuclear cells from 55 pregnant women living in a malaria-endemic area of Papua Nueva Guinea and 9 Spanish malaria-naïve individuals using four 11-color flow cytometry panels. We assessed the expression of markers of B cell specificity (IgG and IgM), activation (CD40, CD80, CD86, b220, TACI, and CD150), inhibition (PD1, CD95, and CD71), and migration (CCR3, CXCR3, and CD62l). We found higher frequencies of active and resting aMBC and marked reduction of MZ-like B cells, although changes in absolute cell counts could not be assessed. Highly exposed women had higher PD1+-, CD95+-, CD40+-, CD71+-, and CD80+-activated aMBC frequencies than non-exposed subjects. Malaria exposure increased frequencies of b220 and proapoptotic markers PD1 and CD95, and decreased expression of the activation marker TACI on MZ-like B cells. The increased frequencies of inhibitory and apoptotic markers on activated aMBCs and MZ-like B cells in malaria-exposed adults suggest an immune-homeostatic mechanism for maintaining B cell development and function while simultaneously downregulating hyperreactive B cells. This mechanism would keep the B cell activation threshold high enough to control infection but impaired enough to tolerate it, preventing systemic inflammation.

7.
Front Immunol ; 8: 163, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261219

RESUMO

A vaccine to eliminate malaria would need a multi-stage and multi-species composition to achieve robust protection, but the lack of knowledge about antigen targets and mechanisms of protection precludes the development of fully efficacious malaria vaccines, especially for Plasmodium vivax (Pv). Pregnant women constitute a risk population who would greatly benefit from a vaccine preventing the adverse events of Plasmodium infection during gestation. We hypothesized that functional immune responses against putative targets of naturally acquired immunity to malaria and vaccine candidates will be associated with protection against malaria infection and/or poor outcomes during pregnancy. We measured (i) IgG responses to a large panel of Pv and Plasmodium falciparum (Pf) antigens, (ii) the capacity of anti-Pv ligand Duffy binding protein (PvDBP) antibodies to inhibit binding to Duffy antigen, and (iii) cellular immune responses to two Pv antigens, in a subset of 1,056 pregnant women from Brazil, Colombia, Guatemala, India, and Papua New Guinea (PNG). There were significant intraspecies and interspecies correlations for most antibody responses (e.g., PfMSP119 versus PfAMA1, Spearman's rho = 0.81). Women from PNG and Colombia had the highest levels of IgG overall. Submicroscopic infections seemed sufficient to boost antibody responses in Guatemala but not antigen-specific cellular responses in PNG. Brazil had the highest percentage of Duffy binding inhibition (p-values versus Colombia: 0.040; Guatemala: 0.047; India: 0.003, and PNG: 0.153) despite having low anti-PvDBP IgG levels. Almost all antibodies had a positive association with present infection, and coinfection with the other species increased this association. Anti-PvDBP, anti-PfMSP1, and anti-PfAMA1 IgG levels at recruitment were positively associated with infection at delivery (p-values: 0.010, 0.003, and 0.023, respectively), suggesting that they are markers of malaria exposure. Peripheral blood mononuclear cells from Pv-infected women presented fewer CD8+IFN-γ+ T cells and secreted more G-CSF and IL-4 independently of the stimulus used in vitro. Functional anti-PvDBP levels at recruitment had a positive association with birth weight (difference per doubling antibody levels: 45 g, p-value: 0.046). Thus, naturally acquired binding-inhibitory antibodies to PvDBP might confer protection against poor outcomes of Pv malaria in pregnancy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA