Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 625(7996): 735-742, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030727

RESUMO

Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3-9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals.


Assuntos
Sequência Conservada , Evolução Molecular , Genoma , Primatas , Animais , Feminino , Humanos , Gravidez , Sequência Conservada/genética , Desoxirribonuclease I/metabolismo , DNA/genética , DNA/metabolismo , Genoma/genética , Mamíferos/classificação , Mamíferos/genética , Placenta , Primatas/classificação , Primatas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo , Proteínas/genética , Regulação da Expressão Gênica/genética
2.
BMC Bioinformatics ; 25(1): 160, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649820

RESUMO

BACKGROUND: The reconstruction of the evolutionary history of organisms has been greatly influenced by the advent of molecular techniques, leading to a significant increase in studies utilizing genomic data from different species. However, the lack of standardization in gene nomenclature poses a challenge in database searches and evolutionary analyses, impacting the accuracy of results obtained. RESULTS: To address this issue, a Python class for standardizing gene nomenclatures, SynGenes, has been developed. It automatically recognizes and converts different nomenclature variations into a standardized form, facilitating comprehensive and accurate searches. Additionally, SynGenes offers a web form for individual searches using different names associated with the same gene. The SynGenes database contains a total of 545 gene name variations for mitochondrial and 2485 for chloroplasts genes, providing a valuable resource for researchers. CONCLUSIONS: The SynGenes platform offers a solution for standardizing gene nomenclatures of mitochondrial and chloroplast genes and providing a standardized search solution for specific markers in GenBank. Evaluation of SynGenes effectiveness through research conducted on GenBank and PubMedCentral demonstrated its ability to yield a greater number of outcomes compared to conventional searches, ensuring more comprehensive and accurate results. This tool is crucial for accurate database searches, and consequently, evolutionary analyses, addressing the challenges posed by non-standardized gene nomenclature.


Assuntos
Evolução Molecular , Terminologia como Assunto , Genes de Cloroplastos , Genes Mitocondriais , Bases de Dados Genéticas , Cloroplastos/genética , Internet , Software
3.
BMC Genomics ; 24(1): 677, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950193

RESUMO

BACKGROUND: Macrobrachium amazonicum is a freshwater prawn widely distributed in South America that is undergoing speciation, so the denomination "M. amazonicum complex" is used for it. The mitochondrial cytochrome c oxidase subunit I (COI) gene has been used to elucidate this speciation, but heteroplasmies and pseudogenes have been recorded, making separation difficult. Obtaining genes from cDNA (RNA) rather than genomic DNA is an effective tool to mitigate those two types of occurrences. The aim of this study was to assemble in silico the mitochondrial DNA (mtDNA) of the Amazonian coastal population of M. amazonicum inhabiting the state of Pará. RESULTS: Sequences were obtained from the prawn's transcriptome using the de novo approach. Six libraries of cDNA from the androgen gland, hepatopancreas, and muscle tissue were used. The mtDNA of M. amazonicum was 14,960 bp in length. It contained 13 protein-coding genes, 21 complete transfer RNAs, and the 12S and 16S subunits of ribosomal RNA. All regions were found on the light strand except tRNAGln, which was on the heavy strand. The control region (D-loop) was not recovered, making for a gap of 793 bp. The cladogram showed the formation of the well-defined Macrobrachium clade, with high support value in the established branches (91-100). The three-dimensional spatial conformation of the mtDNA-encoded proteins showed that most of them were mainly composed of major α-helices that typically shows in those proteins inserted in the membrane (mitochondrial). CONCLUSIONS: It was possible to assemble a large part of the mitochondrial genome of M. amazonicum in silico using data from other genomes deposited in GenBank and to validate it through the similarities between its COI and 16S genes and those from animals of the same region deposited in GenBank. Depositing the M. amazonicum mtDNA sequences in GenBank may help solve the taxonomic problems recorded for the species, in addition to providing complete sequences of candidate coding genes for use as biomarkers in ecological studies.


Assuntos
Genoma Mitocondrial , Palaemonidae , Animais , DNA Mitocondrial/genética , Palaemonidae/genética , DNA Complementar , Transcriptoma , RNA de Transferência/genética , Filogenia
4.
Mol Phylogenet Evol ; 178: 107631, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162736

RESUMO

Even though the monophyletic status of Achiridae has been supported by morphological and molecular data, the interrelationships within the representatives of this family are poorly resolved. In the present study, we carried out the most complete molecular phylogenetic analysis of this group, encompassing all genera and employing both nuclear (Rhodopsin, Recombination activator [Rag 1], Mixed - lineage Leukemia [MLL] and Early Growth Response Protein 3 [EGR3]) and mitochondrial (Cytochrome C Oxidase Subunit I [COI], Cytochrome B [CytB], ATPase 6.8, 16S and 12S RNAr) genes. All topologies based on Maximum Likelihood, Bayesian inferences and Bayesian Inference of the Multispecies Coalescent confirmed the monophyletism of Achiridae, in spite of some incongruences in relation to Achirus mucuri, A. lineatus, Apionichthys finis and Trinectes microphthalmus. In fact, Achirus and Trinectes proved to be non-monophyletic genera while Hypoclinemus mentalis was closely related to A. achirus, suggesting this species should be reevaluated. We provided evidence that Achiridae has first arisen in estuaries (about 23.5 million years ago) and some lineages have evolved independently to either marine or freshwater habitats. Furthermore, we propose a diversification scenario of New World soles involving at least two events of marine incursions during Miocene and Pliocene - Pleistocene associated with natural geographic barriers (Victoria-Trindade chain), the width and exposure of continental shelf and headwater capture along the Amazon basin. Finally, the evolutionary dependence of Achirid soles on estuaries, characterized as highly dynamic environments, has probably driven the recent divergence of many species of Achiridae.


Assuntos
Linguados , Linguado , Animais , Filogenia , Linguados/genética , Teorema de Bayes , Citocromos b/genética , Ecossistema
5.
An Acad Bras Cienc ; 95(suppl 2): e20210997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126517

RESUMO

In this study, we tested the taxonomic validation of red snappers species (Southern red snapper Lutjanus purpureus; Silk snapper L. vivanus; Blackfin snapper L. buccanella; and Pacific red snapper L. peru) based on comparative analysis, using four methods for species delimitation. These methods were based on either genetic similarity or phylogenetic trees inferred from two mitochondrial (Cytochrome b and D-loop) and two nuclear (Myostatin and S7 introns) markers. On one hand, the genetic results corroborated the presence of four red snapper species, confirming their taxonomic validation despite their remarkable morphological similarity. On the other hand, few incongruencies in the species delimitation methods were observed according to the phylogenetic reconstruction method (maximum likelihood or Bayesian inference) when using. Based on the phylogenetic results, L. buccanella should represent a more ancient lineage in relation to the clade that encompasses L. purpureus, L. peru and L. vivanus. The single-locus phylogenetic analysis based on Cytb recovered each the red snapper species as a well-supported clade. Overall, this study provided a DNA-based validation of the traditional morphological taxonomy of red snappers.


Assuntos
Peixes , Perciformes , Animais , Filogenia , Teorema de Bayes , Perciformes/genética , Peru
6.
J Fish Biol ; 102(1): 281-286, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36196900

RESUMO

Boleophthalmus dussumieri is one of the most widely distributed mudskippers and is native to the Persian Gulf in Iran down to the northeast of the Arabian Sea and the coast of India. Nonetheless, the present study is the first to confirm the presence of B. dussumieri in the marine areas of the Mozambique coast. In addition, molecular analysis revealed strong evidence for the existence of two lineages with a high level of nucleotide divergence along the sampled area, revealing a still-neglected taxonomic condition for this lineage/species.


Assuntos
Perciformes , Animais , Moçambique , Oceano Índico , Irã (Geográfico) , Índia
7.
Mol Ecol ; 31(14): 3888-3902, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35638312

RESUMO

Mitochondrial DNA remains a cornerstone for molecular ecology, especially for study species from which high-quality tissue samples cannot be easily obtained. Methods using mitochondrial markers are usually reliant on reference databases, but these are often incomplete. Furthermore, available mitochondrial genomes often lack crucial metadata, such as sampling location, limiting their utility for many analyses. Here, we assembled 205 new mitochondrial genomes for platyrrhine primates, most from the Amazon and with known sampling locations. We present a dated mitogenomic phylogeny based on these samples along with additional published platyrrhine mitogenomes, and use this to assess support for the long-standing riverine barrier hypothesis (RBH), which proposes that river formation was a major driver of speciation in Amazonian primates. Along the Amazon, Negro, and Madeira rivers, we found mixed support for the RBH. While we identified divergences that coincide with a river barrier, only some occur synchronously and also overlap with the proposed dates of river formation. The most compelling evidence is for the Amazon river potentially driving speciation within bearded saki monkeys (Chiropotes spp.) and within the smallest extant platyrrhines, the marmosets and tamarins. However, we also found that even large rivers do not appear to be barriers for some primates, including howler monkeys (Alouatta spp.), uakaris (Cacajao spp.), sakis (Pithecia spp.), and robust capuchins (Sapajus spp.). Our results support a more nuanced, clade-specific effect of riverine barriers and suggest that other evolutionary mechanisms, besides the RBH and allopatric speciation, may have played an important role in the diversification of platyrrhines.


Assuntos
Genoma Mitocondrial , Rios , Animais , Evolução Biológica , Genoma Mitocondrial/genética , Filogenia , Primatas
8.
Mol Phylogenet Evol ; 170: 107426, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35131419

RESUMO

Night monkeys (Aotus, Cebidae) are a widely distributed genus of Neotropical primates with a poorly understood taxonomy and biogeography. The number of species in the genus varies from one to nine, depending on the author, and there are at least 18 known karyotypes, varying from 2n = 46 to 2n = 58. Historically, night monkeys are divided into two species groups: red- and grey-necked groups from south and north of the Amazon-Solimões River, respectively. Here, we used 10 nuclear and 10 mitochondrial molecular markers from a wide taxonomic and geographic sample to infer phylogeny, divergence times, and biogeography of the genus. For phylogenetic reconstruction we used Maximum Likelihood (ML) and Bayesian Inferences (BI). Biogeographic models were generated using the 'BioGeoBEARS' software. We found support for nine taxa of Aotus and rejected the existence of monophyletic "red necked" and "grey necked" species groups. We suggest a taxonomic reclassification of the genus, which is better represented by two clades named northern group, which contains Aotus miconax, A. nancymae, A. trivirgatus, A. vociferans, A. lemurinus, A. griseimembra, A. zonalis, and A. brumbacki, and southern group, which contains A. nigriceps, A. boliviensis, A. infulatus, and A. azarae. The results suggest that the most recent common ancestor of all species of Aotus arose in the central Amazon basin in the Early Pliocene. The evolutionary history of night monkeys was guided by dispersal, vicariance and founder events. The end of the Andean uplift and the subsequent changes in the Amazon landscape, as well as the Amazon-Solimões and Tapajós rivers may have played an important role in the origin and diversification of Aotus, respectively. However, most of the Amazonian rivers seem not to have been geographical barriers to dispersal of night monkeys. The herein named southern group is fruit of a very recent diversification guided by dispersal, crossing the Tapajós, Xingú, Tocantins, and Guapore rivers and reaching the Cerrado in the last 1.6 My.


Assuntos
Aotidae , DNA Mitocondrial , Animais , Aotidae/genética , Teorema de Bayes , Brasil , DNA Mitocondrial/genética , Filogenia , Filogeografia , América do Sul
9.
Mol Phylogenet Evol ; 173: 107504, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577298

RESUMO

Traditionally, Saguinus has been organized into six taxonomic groups: bicolor, inustus, midas, mystax, nigricollis, and oedipus. After recent revisions, taxonomic reclassifications were proposed, including (1) the recognition of Leontocebus as a new genus, and (2) the subdivision of Saguinus into three subgenera. Nonetheless, the contradictory nature of these results reinforces the inconsistency concerning the monophyletic status of tamarins and its interspecific phylogeny. Therefore, in this study, we carried out phylogenetic inferences of Saguinus based on 44 molecular markers, of which 37 were from nuclear DNA and seven from mitochondrial DNA. A final dataset of 24,202 base pairs (bp) was obtained from 60 specimens of all recognized species of Saguinus and, also representatives of two main lineages of Leontocebus. Phylogenetic hypothesis was obtained from Maximum Likelihood (ML) and Bayesian inference (BI) methods. We also construct a Species Tree and a fossil-calibrated multi-locus phylogeny to estimate the time of divergence of Tamarins. Our phylogenetic results validated Leontocebus, or nigricollis group, as monophyletic, and recovered additionally three main clades within Saguinus. Same topology was obtained by the Species Tree. These clades correspond to (1) inustus + mystax groups, (2) oedipus group and (3) bicolor + midas group. Our results show support for a 10.5-million-year-old split between Leontocebus and the remaining Saguinus, followed by two other cladogenetic events, around 9.3 and 7.2 mya, which lead to the rise of the main clades of Saguinus. These phylogenetic data, in concert with the consistent morphological, ecological behavior and biogeographic evidence suggest a new classification for the Amazonian and trans-Andean tamarins. Therefore, we support the validation of Leontocebus as genus and recommend the split of Saguinus into three genera: (1) Tamarinus (inustus and mystax groups), (2) Oedipomidas (oedipus group), and (3) Saguinus (bicolor and midas groups).


Assuntos
Callitrichinae , Cebidae , Animais , Teorema de Bayes , Callitrichinae/anatomia & histologia , Cebidae/genética , DNA Mitocondrial/genética , Filogenia , Saguinus/anatomia & histologia , Saguinus/genética
10.
An Acad Bras Cienc ; 94(2): e20200733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35544846

RESUMO

To understand the organism's history, we can start assessing the complexity of the biome where they occur. In this study, we used a region of the mitochondrial genome, the rRNA 16S, to evaluate the genetic differentiation in Scinax nebulosus along with its geographical range highlighting important Brazilian biomes as Restinga, Cerrado, Amazon, and Atlantic Forest. Geographically structured genetic divergence was observed within the species S. nebulosus. The values of the fixation index (Фst) and the pairwise Fst index were high and significant regarding this structuring. Besides, the haplotype network corroborates these results with the haplotypes arrangement found by separating the S. nebulosus populations in two major groups: North and Northeast. The lineage delimitation analyses indicate the occurrence of several lineages with divergence mainly between the samples from the Northeast group. Thus, we can suggest that S. nebulosus may present itself as a group of cryptic species due to the genetic characteristics found. The existence of a mosaic of heterogeneous habitats may explain the genetic divergence found, which justifies the existence of cryptic species in this group. However, this hypothesis needs more detail in molecular studies, including large sample sizes and other population and demographic analyses.


Assuntos
Anuros , Florestas , Animais , Brasil , DNA Mitocondrial/genética , Ecossistema , Variação Genética/genética , Haplótipos/genética , Filogenia
11.
Genet Mol Biol ; 45(1): e20210177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35262169

RESUMO

Molecular species delimitation methods are efficient tools to identify species, including the discovery of new taxa and cryptic organisms, thus being useful to biodiversity studies. In the present work, 16S mitochondrial sequences and cytochrome oxidase I (COI) were used to evaluate the richness of species in the genus Scinax and Ololygon from a biodiversity hotspot in Atlantic Forest. A total of 109 specimens formally belonging to eight species of Scinax and three species of Ololygon were collected in 13 localities along the state of Bahia (northeastern Brazil) and one site in Espírito Santo (southeastern Brazil). Of the Scinax species collected in this study, three were morphologically differentiated from other described species and identified as putative new species (Scinax sp.1, Scinax sp.2 and Scinax sp.3). The species delimitations were inferred using three different methods: ABGD, PTP and mPTP which allowed recognizing 11 Scinax species and five Ololygon species. Scinax sp. 1, Scinax sp. 2 and Scinax sp. 3, have been confirmed as new putative species and Ololygon argyreornata possibly contains cryptic species. We suggest additional studies, including morphological and bioacoustic data to validate these new putative species.

12.
Mol Phylogenet Evol ; 154: 106968, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33031931

RESUMO

The biogeography of American loliginid squids has been improved in recent years, but certain key taxa have been missing. Given that the most accurate phylogenies and estimates of divergence times of common ancestors depend heavily on good taxonomic coverage we have reanalyzed the genus Lolliguncula in light of new samples that increase the geographic and taxonomic coverage. New sequences were produced using standard methods to update an existing dataset for COI, 16S and Rhodopsin markers. Data was analyzed using various species delimitation methods, rigorous phylogenetic analyses and estimates of divergence times between clades. Within Lolliguncula we recover five monophyletic lineages that relate to the known species L. argus, L. diomedeae, L. panamensis, L. brevis North Atlantic and L. brevis South Atlantic. Except when using low divergence thresholds in ABGD, species delimitation methods only identify four of these lineages as distinct species, grouping L. argus and L. diomedeae as a single species. However, considering the reciprocal monophyly, recent divergence time estimate and morphological diagnoses we refrain from synonymizing L. argus within L. diomedeae, considering them very recently diverged species. The biogeography of the American loliginids is discussed, wherein basal cladogenesis in both Lolliguncula and Doryteuthis occur between the Atlantic and Pacific about 45 mya, with subsequent speciation around 20 mya associated with seafloor changes during the formation of the Caribbean. The recent speciation between L. argus and L. diomedeae is associated to oceanic environmental changes associated with glaciation, deep sea cooling and tropical upwelling.


Assuntos
Decapodiformes/classificação , Filogenia , Filogeografia , Animais , Região do Caribe , Oceanos e Mares , Especificidade da Espécie , Fatores de Tempo
13.
Mol Phylogenet Evol ; 145: 106723, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31891757

RESUMO

The high levels of Neotropical biodiversity are commonly associated with the intense Neogene-Quaternary geological events and climate dynamics. Here, we investigate the evolutionary history of two species of Neotropical closely related amphibians (R. horribilis and R. marina). We combine published data with new mitochondrial DNA sequences and multiple nuclear markers, including 12 microsatellites. The phylogenetic analyses showed support for grouping the samples in two main clades; R. horribilis (Central America and Mexico) and R. marina (South America east of the Andes). However, the phylogenetic inferences also show an evident mito-nuclear discordance. We use Approximate Bayesian Computation (ABC) to test the role of different events in the diversification between the two groups recovered. We found that both species were affected primarily by a recent Pleistocene divergence, which was similar to the divergence estimate revealed by the Isolation-with-Migration model, under persistent bidirectional gene flow through time. We provide the first evidence that R. horribilis is differentiated from the South American R. marina at the nuclear level supporting the taxonomic status of R. horribilis, which has been controversial for more than a century.


Assuntos
Bufo marinus/classificação , Animais , Teorema de Bayes , Evolução Biológica , Bufo marinus/genética , América Central , Citocromos b/química , Citocromos b/classificação , Citocromos b/genética , DNA Mitocondrial/genética , Fluxo Gênico , Variação Genética , Repetições de Microssatélites/genética , Filogenia , Filogeografia , Proteínas Ribossômicas/química , Proteínas Ribossômicas/classificação , Proteínas Ribossômicas/genética , América do Sul
14.
Mol Phylogenet Evol ; 147: 106780, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32135307

RESUMO

Lutjanus campechanus and Lutjanus purpureus are two commercially important lutjanid fishes (snappers) with non-sympatric distribution throughout Western Atlantic. Even though both taxa have traditionally been regarded as valid species, their taxonomic status remains under debate. In the present study, we used phylogeographic approaches and molecular methods of species delimitation to elucidate the taxonomic issues between both species, based on 1478 base pairs from four genomic regions. We found haplotypes shared between the two species, particularly in relation to nuclear DNA (nuDNA) sequences. The molecular delimitation of species supported the discrimination of L. purpureus and L. campechanus as distinct evolutionary units. Nonetheless, a unidirectional gene flow was found from L. campechanus towards L. purpureus. Therefore, it seems plausible to infer that L. campechanus and L. purpureus are two evolutionary units in which the apparent sharing of haplotypes should be driven by introgression.


Assuntos
Loci Gênicos , Perciformes/classificação , Perciformes/genética , Animais , Bases de Dados Genéticas , Genética Populacional , Genoma , Geografia , Haplótipos/genética , Filogenia , Especificidade da Espécie
15.
Am J Primatol ; 82(9): e23167, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32652664

RESUMO

Cheracebus is a new genus of New World primate of the family Pitheciidae, subfamily Callicebinae. Until recently, Cheracebus was classified as the torquatus species group of the genus Callicebus. The genus Cheracebus has six species: C. lucifer, C. lugens, C. regulus, C. medemi, C. torquatus, and C. purinus, which are all endemic to the Amazon biome. Before the present study, there had been no conclusive interpretation of the phylogenetic relationships among most of the Cheracebus species. The present study tests the monophyly of the genus and investigates the relationships among the different Cheracebus species, based on DNA sequencing of 16 mitochondrial and nuclear markers. The phylogenetic analyses were based on Maximum Likelihood, Bayesian Inference, and multispecies coalescent approaches. The divergence times and genetic distances between the Cheracebus taxa were also estimated. The analyses confirmed the monophyly of the genus and a well-supported topology, with the following arrangement: ((C. torquatus, C. lugens), (C. lucifer (C. purinus, C. regulus))). A well-differentiated clade was also identified within part of the geographic range of C. lugens, which warrants further investigation to confirm its taxonomic status.


Assuntos
Filogenia , Pitheciidae/classificação , Animais , DNA Mitocondrial/genética , Pitheciidae/genética , Análise de Sequência de DNA , Especificidade da Espécie
16.
An Acad Bras Cienc ; 92(1): e20180496, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32187273

RESUMO

Arapaima is a widely-distributed fish of enormous economic importance in the Amazon region. In the present study, a total of 232 specimens were sampled, 121 from five sites in the Amazon basin and 111 from five sites in the Tocantins-Araguaia basin. The analyses investigated fragments of the Cytochrome b, Control Region, Cytochrome Oxidase I, NADH dehydrogenase subunit 2 and seven loci microsatellites. The analyses revealed the existence of two mitochondrial lineages within the general area, with no haplotypes shared between basins, and genetic variability significantly higher in the Amazon than in the Tocantins-Araguaia basin. Two divergent, but sympatric mitochondrial lineages were found in the Amazon basin, but only a single lineage in the Tocantins-Araguaia basin. The existence of these two mitochondrial lineages indicates that past events, probably occurring during the Pleistocene, resulted in the separation of the populations of this species and molded its evolutionary history, which is reflected directly in its mitochondrial DNA. The analysis of the arapaima population structure identified distinct levels of diversity within the distribution of the species, indicating specific geographic regions that will require special attention for the development of conservation and management strategies.


Assuntos
DNA Mitocondrial/genética , Peixes/genética , Variação Genética/genética , Repetições de Microssatélites/genética , Animais , Brasil , Peixes/classificação , Geografia , Filogenia , Rios
17.
Mol Phylogenet Evol ; 137: 285-292, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31121309

RESUMO

The genus Hypophthalmus encompasses four valid South American freshwater catfish species: H. marginatus, H. edentatus, H. fimbriatus, and H. oremaculatus. More recently two new species were proposed Hypophthalmus n. sp. 1 and Hypophthalmus n. sp. 2. While Hypophthalmus species are a fundamentally important resource for the commercial fisheries that operate in the continental waters of the Amazon basin, their phylogenetic relationships and the true diversity of the genus have yet to be defined conclusively. Given this, the present study analyzed sequences of the mitochondrial COI gene and four nuclear markers (RAG2, Myh6, Plagl2 and Glyt) to evaluate the phylogenetic relationships and the diversity of the species of this genus. All the analyses showed that Hypophthalmus is monophyletic, and the species delimitation tests recovered all the Hypophthalmus taxa as distinct species. The putative new species Hypophthalmus n. sp. 1 and Hypophthalmus n. sp. 2 presented mean genetic divergence similar to or greater than that observed between valid Hypophthalmus taxa. All the analyses showed that H. oremaculatus is the sister group of H. n. sp. 1, which together group with H. fimbriatus. This clade is the sister group of the clade containing H. edentatus and H. n. sp. 2. One specimen, morphologically identified as H. oremaculatus, presented the nuclear genome of this species and the mitochondrial genome of H. n. sp. 1; while another specimen, morphologically identified as H. n. sp. 2, presented the nuclear Myh6 of H. n. sp. 2 and the mitochondrial and RAG2 genome of H. edentatus. These results indicate that hybridization and introgression has occurred between species in Hypophthalmus. The findings of this study indicate that the diversity of the Hypophthalmus is underestimated, emphasize the need for a taxonomic review of the genus, and a more systematic evaluation of the hybridization patterns found, to understanding the role of hybridization and introgression in the evolution of the genus.


Assuntos
Peixes-Gato/classificação , Peixes-Gato/genética , Loci Gênicos , Variação Genética , Filogenia , Animais , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Hibridização Genética , Mitocôndrias/genética , Especificidade da Espécie
18.
Mol Phylogenet Evol ; 132: 117-137, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30496844

RESUMO

The taxonomy of the titi monkeys (Callicebinae) has recently received considerable attention. It is now recognised that this subfamily is composed of three genera with 33 species, seven of them described since 2002. Here, we describe a new species of titi, Plecturocebus, from the municipality of Alta Floresta, Mato Grosso, Brazil. We adopt an integrative taxonomic approach that includes phylogenomic analyses, pelage characters, and locality records. A reduced representation genome-wide approach was employed to assess phylogenetic relationships among species of the eastern Amazonian clade of the Plecturocebus moloch group. Using existing records, we calculated the Extent of Occurrence (EOO) of the new species and estimated future habitat loss for the region based on predictive models. We then evaluated the species' conservation status using the IUCN Red list categories and criteria. The new species presents a unique combination of morphological characters: (1) grey agouti colouration on the crown and dorsal parts; (2) entirely bright red-brown venter; (3) an almost entirely black tail with a pale tip; and (4) light yellow colouration of the hair on the cheeks contrasting with bright red-brown hair on the sides of the face. Our phylogenetic reconstructions based on maximum-likelihood and Bayesian methods revealed well-supported species relationships, with the Alta Floresta taxon as sister to P. moloch + P. vieirai. The species EOO is 10,166,653 ha and we predict a total habitat loss of 86% of its original forest habitat under a "business as usual" scenario in the next 24 years, making the newly discovered titi monkey a Critically Endangered species under the IUCN A3c criterion. We give the new titi monkey a specific epithet based on: (1) clear monophyly of this lineage revealed by robust genomic and mitochondrial data; (2) distinct and diagnosable pelage morphology; and (3) a well-defined geographical distribution with clear separation from other closely related taxa. Urgent conservation measures are needed to safeguard the future of this newly discovered and already critically endangered primate.


Assuntos
Pitheciidae/classificação , Animais , Teorema de Bayes , Brasil , Citocromos b/genética , Ecossistema , Espécies em Perigo de Extinção , Genoma , Mitocôndrias/genética , Filogenia , Pitheciidae/anatomia & histologia , Pitheciidae/genética , Polimorfismo de Nucleotídeo Único
19.
An Acad Bras Cienc ; 91(4): e20181240, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31800702

RESUMO

This study presents the first record of Elops smithi for northern Brazil. The evidence suggests this species is being misidentified incorrectly as Elops saurus in estuaries of the Western Atlantic Ocean. Here, morphological, molecular, and cytogenetic evidence identified all ladyfish specimens from one estuary in the region as E. smithi. Thus, at least Elops smithi occurs in the northern coast of Brazil and it is recommended that specimens from this region identified as E. saurus be further investigated with genetic and cytogenetic tools in order to assure a correct species identification.


Assuntos
Peixes/classificação , Peixes/genética , Distribuição Animal , Animais , Brasil , Estuários , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
20.
J Sci Food Agric ; 99(6): 2998-3004, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30478936

RESUMO

BACKGROUND: In recent years, tracing of alimentary produce of animal origin has become increasingly important, for economic, food safety and ecological reasons. The tambaqui, Colossoma macropomum, is the native fish most farmed in Brazil. The reliable identification of the origin of tambaquis (wild or farmed) offered for sale to the general public has become necessary to satisfy regulatory norms and uphold consumer confidence. Molecular methods based on the analysis of DNA sequences have often been used to evaluate the potential for tracing farmed fish, given their reliability and precision. RESULTS: Full likelihood and Bayesian approaches proved to be the most efficient for the identification, respectively, of individuals and populations for most of the fish sampled from seven hatcheries and one wild stock. The exclusion method and genetic distances were the least effective approaches for the identification of individuals and populations. The Bayesian method identified correctly more than 99% of the fry from most stocks, except those of the Santarém hatchery and River Amazon wild stock, which presented the best results for individual identification. CONCLUSIONS: The identification of populations was effective for most hatcheries, although the identification of individuals from most stocks was hampered by the reduced genetic variability. © 2018 Society of Chemical Industry.


Assuntos
Caraciformes/genética , Repetições de Microssatélites , Animais , Animais Selvagens/classificação , Animais Selvagens/genética , Animais Selvagens/crescimento & desenvolvimento , Brasil , Caraciformes/classificação , Caraciformes/crescimento & desenvolvimento , Pesqueiros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA