Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 36(3): 545-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26769045

RESUMO

OBJECTIVE: Peripheral arterial disease is highly prevalent in the elderly and in the subjects with cardiovascular risk factors such as diabetes. Approximately 2% to 4% of those affected with peripheral arterial disease commonly complain of intermittent claudication. Cilostazol, a type III phosphodiesterase inhibitor, is the only Food and Drug Administration-approved drug for the treatment of intermittent claudication. Cilostazol has been shown to be beneficial for the improvement of pain-free walking distance in patients with intermittent claudication in a series of randomized clinical trials. However, the underlying mechanism how cilostazol improved intermittent claudication symptoms is still unclear. APPROACH AND RESULTS: In this study, the effect of cilostazol on ischemic leg was investigated in mouse ischemic hindlimb model. Administration of cilostazol significantly increased the expression of hepatocyte growth factor (HGF), vascular endothelial growth factor, angiopoietin-1, and peroxisome proliferator-activated receptor-γ in vasculature. The capillary density in ischemic leg was also significantly increased in cilostazol treatment group when compared with control and aspirin treatment group. However, an increase in capillary density and the expression of growth factors was almost completely abolished by coadministration of HGF-neutralizing antibody, suggesting that cilostazol enhanced angiogenesis mainly through HGF. In vitro experiment revealed that cilostazol treatment increased HGF production in vascular smooth muscle cells via 2 major pathways: peroxisome proliferator-activated receptor-γ and cAMP pathways. CONCLUSIONS: Our data suggest that the favorable effects of cilostazol on ischemic leg might be through the angiogenesis through the induction of HGF via peroxisome proliferator-activated receptor-γ and cAMP pathways.


Assuntos
Indutores da Angiogênese/farmacologia , AMP Cíclico/metabolismo , Isquemia/tratamento farmacológico , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , PPAR gama/agonistas , Inibidores da Fosfodiesterase 3/farmacologia , Sistemas do Segundo Mensageiro , Tetrazóis/farmacologia , Angiopoietina-1/metabolismo , Animais , Capilares/efeitos dos fármacos , Capilares/enzimologia , Capilares/fisiopatologia , Células Cultivadas , Cilostazol , Modelos Animais de Doenças , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Isquemia/enzimologia , Isquemia/genética , Isquemia/fisiopatologia , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , PPAR gama/metabolismo , Ratos , Fatores de Tempo , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Circ Res ; 114(1): 41-55, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24170267

RESUMO

RATIONALE: Hypoxia favors stem cell quiescence, whereas normoxia is required for stem cell activation, but whether cardiac stem cell (CSC) function is regulated by the hypoxic/normoxic state of the cell is currently unknown. OBJECTIVE: A balance between hypoxic and normoxic CSCs may be present in the young heart, although this homeostatic control may be disrupted with aging. Defects in tissue oxygenation occur in the old myocardium, and this phenomenon may expand the pool of hypoxic CSCs, which are no longer involved in myocyte renewal. METHODS AND RESULTS: Here, we show that the senescent heart is characterized by an increased number of quiescent CSCs with intact telomeres that cannot re-enter the cell cycle and form a differentiated progeny. Conversely, myocyte replacement is controlled only by frequently dividing CSCs with shortened telomeres; these CSCs generate a myocyte population that is chronologically young but phenotypically old. Telomere dysfunction dictates their actual age and mechanical behavior. However, the residual subset of quiescent young CSCs can be stimulated in situ by stem cell factor reversing the aging myopathy. CONCLUSIONS: Our findings support the notion that strategies targeting CSC activation and growth interfere with the manifestations of myocardial aging in an animal model. Although caution has to be exercised in the translation of animal studies to human beings, our data strongly suggest that a pool of functionally competent CSCs persists in the senescent heart and that this stem cell compartment can promote myocyte regeneration effectively, partly correcting the aging myopathy.


Assuntos
Envelhecimento/efeitos dos fármacos , Cardiomiopatias/metabolismo , Hipóxia/metabolismo , Mioblastos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Células-Tronco/farmacologia , Nicho de Células-Tronco , Envelhecimento/metabolismo , Animais , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/patologia , Ciclo Celular , Linhagem da Célula , Proliferação de Células , Senescência Celular/efeitos dos fármacos , Hipóxia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/fisiologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Fator de Células-Tronco/uso terapêutico , Homeostase do Telômero
3.
Circ Res ; 112(9): 1253-62, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23463815

RESUMO

RATIONALE: Multiple progenitors derived from the heart and bone marrow (BM) have been used for cardiac repair. Despite this, not much is known about the molecular identity and relationship among these progenitors. To develop a robust stem cell therapy for the heart, it is critical to understand the molecular identity of the multiple cardiogenic progenitor cells. OBJECTIVE: This study is the first report of high-throughput transcriptional profiling of cardiogenic progenitor cells carried out on an identical platform. METHOD AND RESULTS: Microarray-based transcriptional profiling was carried out for 3 cardiac (ckit(+), Sca1(+), and side population) and 2 BM (ckit(+) and mesenchymal stem cell) progenitors, obtained from age- and sex-matched wild-type C57BL/6 mice. Analysis indicated that cardiac-derived ckit(+) population was very distinct from Sca1(+) and side population cells in the downregulation of genes encoding for cell-cell and cell-matrix adhesion proteins, and in the upregulation of developmental genes. Significant enrichment of transcripts involved in DNA replication and repair was observed in BM-derived progenitors. The BM ckit(+) cells seemed to have the least correlation with the other progenitors, with enrichment of immature neutrophil-specific molecules. CONCLUSIONS: Our study indicates that cardiac ckit(+) cells represent the most primitive population in the rodent heart. Primitive cells of cardiac versus BM origin differ significantly with respect to stemness and cardiac lineage-specific genes, and molecules involved in DNA replication and repair. The detailed molecular profile of progenitors reported here will serve as a useful reference to determine the molecular identity of progenitors used in future preclinical and clinical studies.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Linhagem da Célula , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco/metabolismo , Animais , Antígenos Ly/metabolismo , Biomarcadores/metabolismo , Adesão Celular/genética , Comunicação Celular/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Células Cultivadas , Reparo do DNA/genética , Replicação do DNA/genética , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Ensaios de Triagem em Larga Escala , Separação Imunomagnética , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Proteínas Proto-Oncogênicas c-kit/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/genética
4.
Circulation ; 128(20): 2211-23, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24141256

RESUMO

BACKGROUND: Aging negatively impacts on the function of resident human cardiac progenitor cells (hCPCs). Effective regeneration of the injured heart requires mobilization of hCPCs to the sites of damage. In the young heart, signaling by the guidance receptor EphA2 in response to the ephrin A1 ligand promotes hCPC motility and improves cardiac recovery after infarction. METHODS AND RESULTS: We report that old hCPCs are characterized by cell-autonomous inhibition of their migratory ability ex vivo and impaired translocation in vivo in the damaged heart. EphA2 expression was not decreased in old hCPCs; however, the elevated level of reactive oxygen species in aged cells induced post-translational modifications of the EphA2 protein. EphA2 oxidation interfered with ephrin A1-stimulated receptor auto-phosphorylation, activation of Src family kinases, and caveolin-1-mediated internalization of the receptor. Cellular aging altered the EphA2 endocytic route, affecting the maturation of EphA2-containing endosomes and causing premature signal termination. Overexpression of functionally intact EphA2 in old hCPCs corrected the defects in endocytosis and downstream signaling, enhancing cell motility. Based on the ability of phenotypically young hCPCs to respond efficiently to ephrin A1, we developed a novel methodology for the prospective isolation of live hCPCs with preserved migratory capacity and growth reserve. CONCLUSIONS: Our data demonstrate that the ephrin A1/EphA2 pathway may serve as a target to facilitate trafficking of hCPCs in the senescent myocardium. Importantly, EphA2 receptor function can be implemented for the selection of hCPCs with high therapeutic potential, a clinically relevant strategy that does not require genetic manipulation of stem cells.


Assuntos
Células-Tronco Adultas/fisiologia , Envelhecimento/fisiologia , Movimento Celular/fisiologia , Miocárdio/citologia , Receptor EphA2/metabolismo , Transdução de Sinais/fisiologia , Adulto , Células-Tronco Adultas/citologia , Idoso , Células Cultivadas , Endocitose/fisiologia , Efrina-A1/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptor EphA2/genética , Regeneração/fisiologia , Transferrina/metabolismo
5.
Circulation ; 128(12): 1286-97, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23983250

RESUMO

BACKGROUND: Little is known about the function of inositol 1,4,5-trisphosphate receptors (IP3Rs) in the adult heart experimentally. Moreover, whether these Ca(2+) release channels are present and play a critical role in human cardiomyocytes remains to be defined. IP3Rs may be activated after Gαq-protein-coupled receptor stimulation, affecting Ca(2+) cycling, enhancing myocyte performance, and potentially favoring an increase in the incidence of arrhythmias. METHODS AND RESULTS: IP3R function was determined in human left ventricular myocytes, and this analysis was integrated with assays in mouse myocytes to identify the mechanisms by which IP3Rs influence the electric and mechanical properties of the myocardium. We report that IP3Rs are expressed and operative in human left ventricular myocytes. After Gαq-protein-coupled receptor activation, Ca(2+) mobilized from the sarcoplasmic reticulum via IP3Rs contributes to the decrease in resting membrane potential, prolongation of the action potential, and occurrence of early afterdepolarizations. Ca(2+) transient amplitude and cell shortening are enhanced, and extrasystolic and dysregulated Ca(2+) elevations and contractions become apparent. These alterations in the electromechanical behavior of human cardiomyocytes are coupled with increased isometric twitch of the myocardium and arrhythmic events, suggesting that Gαq-protein-coupled receptor activation provides inotropic reserve, which is hampered by electric instability and contractile abnormalities. Additionally, our findings support the notion that increases in Ca(2+) load by IP3Rs promote Ca(2+) extrusion by forward-mode Na(+)/Ca(2+) exchange, an important mechanism of arrhythmic events. CONCLUSIONS: The Gαq-protein/coupled receptor/IP3R axis modulates the electromechanical properties of the human myocardium and its propensity to develop arrhythmias.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Insuficiência Cardíaca/fisiopatologia , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Miócitos Cardíacos/fisiologia , Adulto , Animais , Arritmias Cardíacas/fisiopatologia , Células Cultivadas , Feminino , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Insuficiência Cardíaca/genética , Ventrículos do Coração/citologia , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Retículo Sarcoplasmático/fisiologia , Transdução de Sinais/fisiologia
6.
N Engl J Med ; 364(19): 1795-806, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21561345

RESUMO

BACKGROUND: Although progenitor cells have been described in distinct anatomical regions of the lung, description of resident stem cells has remained elusive. METHODS: Surgical lung-tissue specimens were studied in situ to identify and characterize human lung stem cells. We defined their phenotype and functional properties in vitro and in vivo. RESULTS: Human lungs contain undifferentiated human lung stem cells nested in niches in the distal airways. These cells are self-renewing, clonogenic, and multipotent in vitro. After injection into damaged mouse lung in vivo, human lung stem cells form human bronchioles, alveoli, and pulmonary vessels integrated structurally and functionally with the damaged organ. The formation of a chimeric lung was confirmed by detection of human transcripts for epithelial and vascular genes. In addition, the self-renewal and long-term proliferation of human lung stem cells was shown in serial-transplantation assays. CONCLUSIONS: Human lungs contain identifiable stem cells. In animal models, these cells participate in tissue homeostasis and regeneration. They have the undemonstrated potential to promote tissue restoration in patients with lung disease. (Funded by the National Institutes of Health.).


Assuntos
Pulmão/citologia , Células-Tronco/fisiologia , Adulto , Animais , Células Clonais , Feminino , Humanos , Pulmão/embriologia , Pulmão/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Pluripotentes , Proteínas Proto-Oncogênicas c-kit/análise , Regeneração , Transplante de Células-Tronco , Células-Tronco/química
7.
Circ Res ; 111(7): 894-906, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22851539

RESUMO

RATIONALE: According to the immortal DNA strand hypothesis, dividing stem cells selectively segregate chromosomes carrying the old template DNA, opposing accumulation of mutations resulting from nonrepaired replication errors and attenuating telomere shortening. OBJECTIVE: Based on the premise of the immortal DNA strand hypothesis, we propose that stem cells retaining the old DNA would represent the most powerful cells for myocardial regeneration. METHODS AND RESULTS: Division of human cardiac stem cells (hCSCs) by nonrandom and random segregation of chromatids was documented by clonal assay of bromodeoxyuridine-tagged hCSCs. Additionally, their growth properties were determined by a series of in vitro and in vivo studies. We report that a small class of hCSCs retain during replication the mother DNA and generate 2 daughter cells, which carry the old and new DNA, respectively. hCSCs with immortal DNA form a pool of nonsenescent cells with longer telomeres and higher proliferative capacity. The self-renewal and long-term repopulating ability of these cells was shown in serial-transplantation assays in the infarcted heart; these cells created a chimeric organ, composed of spared rat and regenerated human cardiomyocytes and coronary vessels, leading to a remarkable restoration of cardiac structure and function. The documentation that hCSCs divide by asymmetrical and symmetrical chromatid segregation supports the view that the human heart is a self-renewing organ regulated by a compartment of resident hCSCs. CONCLUSIONS: The impressive recovery in ventricular hemodynamics and anatomy mediated by clonal hCSCs carrying the "mother" DNA underscores the clinical relevance of this stem cell class for the management of heart failure in humans.


Assuntos
Cromátides/fisiologia , Segregação de Cromossomos/fisiologia , Coração/fisiologia , Infarto do Miocárdio/terapia , Miocárdio/citologia , Regeneração/fisiologia , Transplante de Células-Tronco , Células-Tronco/citologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Bromodesoxiuridina , Proliferação de Células , Células Cultivadas , Criança , Pré-Escolar , Cromátides/ultraestrutura , DNA/fisiologia , Feminino , Humanos , Técnicas In Vitro , Lactente , Masculino , Pessoa de Meia-Idade , Modelos Animais , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Ratos , Ratos Endogâmicos F344 , Células-Tronco/fisiologia , Telômero/ultraestrutura , Adulto Jovem
8.
Circ Res ; 110(5): 701-15, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22275487

RESUMO

RATIONALE: Embryonic and fetal myocardial growth is characterized by a dramatic increase in myocyte number, but whether the expansion of the myocyte compartment is dictated by activation and commitment of resident cardiac stem cells (CSCs), division of immature myocytes or both is currently unknown. OBJECTIVE: In this study, we tested whether prenatal cardiac development is controlled by activation and differentiation of CSCs and whether division of c-kit-positive CSCs in the mouse heart is triggered by spontaneous Ca(2+) oscillations. METHODS AND RESULTS: We report that embryonic-fetal c-kit-positive CSCs are self-renewing, clonogenic and multipotent in vitro and in vivo. The growth and commitment of c-kit-positive CSCs is responsible for the generation of the myocyte progeny of the developing heart. The close correspondence between values computed by mathematical modeling and direct measurements of myocyte number at E9, E14, E19 and 1 day after birth strongly suggests that the organogenesis of the embryonic heart is dependent on a hierarchical model of cell differentiation regulated by resident CSCs. The growth promoting effects of c-kit-positive CSCs are triggered by spontaneous oscillations in intracellular Ca(2+), mediated by IP3 receptor activation, which condition asymmetrical stem cell division and myocyte lineage specification. CONCLUSIONS: Myocyte formation derived from CSC differentiation is the major determinant of cardiac growth during development. Division of c-kit-positive CSCs in the mouse is promoted by spontaneous Ca(2+) spikes, which dictate the pattern of stem cell replication and the generation of a myocyte progeny at all phases of prenatal life and up to one day after birth.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Coração/embriologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Células Cultivadas , Técnicas de Cultura Embrionária , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Modelos Teóricos , Organogênese/fisiologia , Proteínas Proto-Oncogênicas c-kit/genética
9.
Cells ; 13(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39195230

RESUMO

Tongue squamous cell carcinoma (TSCC) occurs frequently in the oral cavity, and because of its high proliferative and metastatic potential, it is necessary to develop a novel treatment for it. We have reported the importance of the inhibition of the periostin (POSTN) pathological splicing variant, including exon 21 (PN1-2), in various malignancies, but its influence is unclear in tongue cancer. In this study, we investigated the potential of POSTN exon 21-specific neutralizing antibody (PN21-Ab) as a novel treatment for TSCC. Human PN2 was transfected into the human TSCC (HSC-3) and cultured under stress, and PN2 was found to increase cell viability. PN2 induced chemotherapy resistance in HSC-3 via the phosphorylation of the cell survival signal Akt. In tissues from human TSCC and primary tumors of an HSC-3 xenograft model, PN1-2 was expressed in the tumor stroma, mainly from fibroblasts. The intensity of PN1-2 mRNA expression was positively correlated with malignancy. In the HSC-3 xenograft model, CDDP and PN21-Ab promoted CDPP's inhibition of tumor growth. These results suggest that POSTN exon 21 may be a biomarker for tongue cancer and that PN21-Ab may be a novel treatment for chemotherapy-resistant tongue cancer. The treatment points towards important innovations for TSCC, but many more studies are needed to extrapolate the results.


Assuntos
Moléculas de Adesão Celular , Resistencia a Medicamentos Antineoplásicos , Éxons , Neoplasias da Língua , Humanos , Neoplasias da Língua/patologia , Neoplasias da Língua/genética , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Éxons/genética , Linhagem Celular Tumoral , Camundongos , Masculino , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/efeitos dos fármacos , Pessoa de Meia-Idade , Camundongos Endogâmicos BALB C , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Periostina
10.
Cells ; 13(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39272982

RESUMO

BACKGROUND: Periostin (POSTN) is a type of matrix protein that functions by binding to other matrix proteins, cell surface receptors, or other molecules, such as cytokines and proteases. POSTN has four major splicing variants (PN1-4), which are primarily expressed in fibroblasts and cancer. We have reported that we should inhibit pathological POSTN (PN1-3), but not physiological POSTN (PN4). In particular, pathological POSTN with exon 17 is present in both stroma and cancer, but it is unclear whether the stroma or cancer pathological POSTN should be suppressed. METHODS AND RESULTS: We transplanted 4T1 cells (breast cancer) secreting POSTN with exon 17 into 17KO mice lacking POSTN exon 17 to suppress stromal POSTN with exon 17. The results show that 17KO mice had smaller primary tumors and fewer metastases. Furthermore, to suppress cancer POSTN with exon 17, 4T1 cells transfected with POSTN exon 17 skipping oligo or control oligo were transplanted from the tail vein into the lungs. The results show that POSTN exon 17 skipping oligo significantly suppressed lung metastasis. CONCLUSIONS: These findings suggest that it is important to suppress POSTN exon 17 in both stroma and cancer. Antibody targeting POSTN exon 17 may be a therapeutic candidate for breast cancer.


Assuntos
Moléculas de Adesão Celular , Éxons , Células Estromais , Animais , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Éxons/genética , Camundongos , Feminino , Linhagem Celular Tumoral , Células Estromais/metabolismo , Células Estromais/patologia , Humanos , Processamento Alternativo/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Camundongos Knockout , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos BALB C , Periostina
11.
Circulation ; 126(15): 1869-81, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22955965

RESUMO

BACKGROUND: Two opposite views of cardiac growth are currently held; one views the heart as a static organ characterized by a large number of cardiomyocytes that are present at birth and live as long as the organism, and the other views the heart a highly plastic organ in which the myocyte compartment is restored several times during the course of life. METHODS AND RESULTS: The average age of cardiomyocytes, vascular endothelial cells (ECs), and fibroblasts and their turnover rates were measured by retrospective (14)C birth dating of cells in 19 normal hearts 2 to 78 years of age and in 17 explanted failing hearts 22 to 70 years of age. We report that the human heart is characterized by a significant turnover of ventricular myocytes, ECs, and fibroblasts, physiologically and pathologically. Myocyte, EC, and fibroblast renewal is very high shortly after birth, decreases during postnatal maturation, remains relatively constant in the adult organ, and increases dramatically with age. From 20 to 78 years of age, the adult human heart entirely replaces its myocyte, EC, and fibroblast compartment ≈8, ≈6, and ≈8 times, respectively. Myocyte, EC, and fibroblast regeneration is further enhanced with chronic heart failure. CONCLUSIONS: The human heart is a highly dynamic organ that retains a remarkable degree of plasticity throughout life and in the presence of chronic heart failure. However, the ability to regenerate cardiomyocytes, vascular ECs, and fibroblasts cannot prevent the manifestations of myocardial aging or oppose the negative effects of ischemic and idiopathic dilated cardiomyopathy.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Desenvolvimento Muscular/fisiologia , Miócitos Cardíacos/fisiologia , Adolescente , Adulto , Idoso , Envelhecimento , Criança , Pré-Escolar , Células Endoteliais/fisiologia , Fibroblastos/fisiologia , Coração/fisiologia , Humanos , Pessoa de Meia-Idade , Miócitos Cardíacos/citologia , Regeneração , Doadores de Tecidos , Adulto Jovem
12.
Circ Res ; 108(7): 857-61, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21330601

RESUMO

RATIONALE: Two categories of cardiac stem cells (CSCs) with predominantly myogenic (mCSC) and vasculogenic (vCSC) properties have been characterized in the human heart. However, it is unknown whether functionally competent CSCs of both classes are present in the myocardium of patients affected by end-stage cardiac failure, and whether these cells can be harvested from relatively small myocardial samples. OBJECTIVE: To establish whether a clinically relevant number of mCSCs and vCSCs can be isolated and expanded from endomyocardial biopsies of patients undergoing cardiac transplantation or left ventricular assist device implantation. METHODS AND RESULTS: Endomyocardial biopsies were collected with a bioptome from the right side of the septum of explanted hearts or the apical LV core at the time of left ventricular assist device implantation. Two to 5 biopsies from each patient were enzymatically dissociated, and, after expansion, cells were sorted for c-kit (mCSCs) or c-kit and KDR (vCSCs) and characterized. mCSCs and vCSCs constituted 97% and 3% of the c-kit population, respectively. Population doubling time averaged 27 hours in mCSCs and vCSCs; 5×10(6) mCSCs and vCSCs were obtained in 28 and 41 days, respectively. Both CSC classes possessed significant growth reserve as documented by high telomerase activity and relatively long telomeres. mCSCs formed mostly cardiomyocytes, and vCSCs endothelial and smooth muscle cells. CONCLUSIONS: The growth properties of mCSCs and vCSCs isolated from endomyocardial biopsies from patients with advanced heart failure were comparable to those obtained previously from larger myocardial samples of patients undergoing elective cardiac surgery.


Assuntos
Células-Tronco Adultas/patologia , Células-Tronco Adultas/fisiologia , Cardiomiopatias/patologia , Miocárdio/patologia , Adulto , Idoso , Biópsia , Cardiomiopatias/fisiopatologia , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Feminino , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Telômero/patologia
13.
Circ Res ; 108(12): 1467-81, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21546606

RESUMO

RATIONALE: Age and coronary artery disease may negatively affect the function of human cardiac stem cells (hCSCs) and their potential therapeutic efficacy for autologous cell transplantation in the failing heart. OBJECTIVE: Insulin-like growth factor (IGF)-1, IGF-2, and angiotensin II (Ang II), as well as their receptors, IGF-1R, IGF-2R, and AT1R, were characterized in c-kit(+) hCSCs to establish whether these systems would allow us to separate hCSC classes with different growth reserve in the aging and diseased myocardium. METHODS AND RESULTS: C-kit(+) hCSCs were collected from myocardial samples obtained from 24 patients, 48 to 86 years of age, undergoing elective cardiac surgery for coronary artery disease. The expression of IGF-1R in hCSCs recognized a young cell phenotype defined by long telomeres, high telomerase activity, enhanced cell proliferation, and attenuated apoptosis. In addition to IGF-1, IGF-1R(+) hCSCs secreted IGF-2 that promoted myocyte differentiation. Conversely, the presence of IGF-2R and AT1R, in the absence of IGF-1R, identified senescent hCSCs with impaired growth reserve and increased susceptibility to apoptosis. The ability of IGF-1R(+) hCSCs to regenerate infarcted myocardium was then compared with that of unselected c-kit(+) hCSCs. IGF-1R(+) hCSCs improved cardiomyogenesis and vasculogenesis. Pretreatment of IGF-1R(+) hCSCs with IGF-2 resulted in the formation of more mature myocytes and superior recovery of ventricular structure. CONCLUSIONS: hCSCs expressing only IGF-1R synthesize both IGF-1 and IGF-2, which are potent modulators of stem cell replication, commitment to the myocyte lineage, and myocyte differentiation, which points to this hCSC subset as the ideal candidate cell for the management of human heart failure.


Assuntos
Doença da Artéria Coronariana/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Receptor IGF Tipo 1/metabolismo , Regeneração , Células-Tronco/metabolismo , Angiotensina II/metabolismo , Diferenciação Celular , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/terapia , Feminino , Humanos , Fator de Crescimento Insulin-Like I/biossíntese , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Receptor IGF Tipo 2/metabolismo , Transplante de Células-Tronco , Células-Tronco/patologia , Transplante Autólogo
14.
Arterioscler Thromb Vasc Biol ; 32(11): 2687-93, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22936342

RESUMO

OBJECTIVE: Lipopolysaccharide (LPS) triggers sepsis and systemic inflammatory response syndrome, which results in multiple organ failure. Our recent reports demonstrated that hepatocyte growth factor (HGF) attenuated angiotensin II-induced oxidative stress via epithelial growth factor receptor (EGFR) degradation in vascular smooth muscle cells. Here, we examined whether HGF can protect against systemic inflammatory response syndrome induced by LPS and investigated the mechanism. METHODS AND RESULTS: HGF inhibited the increase in the expression of vascular cell adhesion molecule-1 and EGFR by LPS in vitro. HGF inhibited colocalization of EGFR and Src homology domain 2-containing inositol 5'-phosphatase 2. Furthermore, HGF inhibited reactive oxygen species production. We also injected LPS into HGF transgenic mice with increased HGF serum concentration and their littermates. HGF transgenic mice reduced LPS-induced vascular cell adhesion molecule-1 and reactive oxygen species compared with control, accompanied by significant EGFR degradation. Furthermore, HGF transgenic mice significantly improved survival in the LPS injection model. CONCLUSIONS: The present study revealed inhibition of LPS-induced vascular cell adhesion molecule-1 expression by HGF via the degradation of EGFR. We demonstrated that HGF regulated Src homology domain 2-containing inositol 5'-phosphatase 2 recruitment to EGFR and inhibited LPS-induced inflammation via EGFR degradation. This effect of HGF may be useful for the treatment of inflammatory disease.


Assuntos
Receptores ErbB/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Lipopolissacarídeos , Estresse Oxidativo , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Permeabilidade Capilar , Células Cultivadas , Modelos Animais de Doenças , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Cloridrato de Erlotinib , Fator de Crescimento de Hepatócito/genética , Humanos , Inositol Polifosfato 5-Fosfatases , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente , Síndrome de Resposta Inflamatória Sistêmica/prevenção & controle , Transfecção , Molécula 1 de Adesão de Célula Vascular/metabolismo
15.
Circulation ; 123(12): 1287-96, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21403094

RESUMO

BACKGROUND: Cardiac stem cells (CSCs) delivered to the infarcted heart generate a large number of small fetal-neonatal cardiomyocytes that fail to acquire the differentiated phenotype. However, the interaction of CSCs with postmitotic myocytes results in the formation of cells with adult characteristics. METHODS AND RESULTS: On the basis of results of in vitro and in vivo assays, we report that the commitment of human CSCs (hCSCs) to the myocyte lineage and the generation of mature working cardiomyocytes are influenced by microRNA-499 (miR-499), which is barely detectable in hCSCs but is highly expressed in postmitotic human cardiomyocytes. miR-499 traverses gap junction channels and translocates to structurally coupled hCSCs favoring their differentiation into functionally competent cells. Expression of miR-499 in hCSCs represses the miR-499 target genes Sox6 and Rod1, enhancing cardiomyogenesis in vitro and after infarction in vivo. Although cardiac repair was detected in all cell-treated infarcted hearts, the aggregate volume of the regenerated myocyte mass and myocyte cell volume were greater in animals injected with hCSCs overexpressing miR-499. Treatment with hCSCs resulted in an improvement in ventricular function, consisting of a better preservation of developed pressure and positive and negative dP/dt after infarction. An additional positive effect on cardiac performance occurred with miR-499, pointing to enhanced myocyte differentiation/hypertrophy as the mechanism by which miR-499 potentiated the restoration of myocardial mass and function in the infarcted heart. CONCLUSIONS: The recognition that miR-499 promotes the differentiation of hCSCs into mechanically integrated cardiomyocytes has important clinical implications for the treatment of human heart failure.


Assuntos
Células-Tronco Adultas/citologia , MicroRNAs/fisiologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Transplante de Células-Tronco , Células-Tronco Adultas/fisiologia , Animais , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Junções Comunicantes/fisiologia , Expressão Gênica/fisiologia , Humanos , Infarto do Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Proteínas de Ligação a RNA/genética , Ratos , Regeneração/fisiologia , Fatores de Transcrição SOXD/genética
16.
Lancet ; 378(9806): 1847-57, 2011 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-22088800

RESUMO

BACKGROUND: c-kit-positive, lineage-negative cardiac stem cells (CSCs) improve post-infarction left ventricular (LV) dysfunction when administered to animals. We undertook a phase 1 trial (Stem Cell Infusion in Patients with Ischemic cardiOmyopathy [SCIPIO]) of autologous CSCs for the treatment of heart failure resulting from ischaemic heart disease. METHODS: In stage A of the SCIPIO trial, patients with post-infarction LV dysfunction (ejection fraction [EF] ≤40%) before coronary artery bypass grafting were consecutively enrolled in the treatment and control groups. In stage B, patients were randomly assigned to the treatment or control group in a 2:3 ratio by use of a computer-generated block randomisation scheme. 1 million autologous CSCs were administered by intracoronary infusion at a mean of 113 days (SE 4) after surgery; controls were not given any treatment. Although the study was open label, the echocardiographic analyses were masked to group assignment. The primary endpoint was short-term safety of CSCs and the secondary endpoint was efficacy. A per-protocol analysis was used. This study is registered with ClinicalTrials.gov, number NCT00474461. FINDINGS: This study is still in progress. 16 patients were assigned to the treatment group and seven to the control group; no CSC-related adverse effects were reported. In 14 CSC-treated patients who were analysed, LVEF increased from 30·3% (SE 1·9) before CSC infusion to 38·5% (2·8) at 4 months after infusion (p=0·001). By contrast, in seven control patients, during the corresponding time interval, LVEF did not change (30·1% [2·4] at 4 months after CABG vs 30·2% [2·5] at 8 months after CABG). Importantly, the salubrious effects of CSCs were even more pronounced at 1 year in eight patients (eg, LVEF increased by 12·3 ejection fraction units [2·1] vs baseline, p=0·0007). In the seven treated patients in whom cardiac MRI could be done, infarct size decreased from 32·6 g (6·3) by 7·8 g (1·7; 24%) at 4 months (p=0·004) and 9·8 g (3·5; 30%) at 1 year (p=0·04). INTERPRETATION: These initial results in patients are very encouraging. They suggest that intracoronary infusion of autologous CSCs is effective in improving LV systolic function and reducing infarct size in patients with heart failure after myocardial infarction, and warrant further, larger, phase 2 studies. FUNDING: University of Louisville Research Foundation and National Institutes of Health.


Assuntos
Vasos Coronários , Infarto do Miocárdio/mortalidade , Infarto do Miocárdio/terapia , Transplante de Células-Tronco/métodos , Terapia Combinada , Ponte de Artéria Coronária/métodos , Ecocardiografia Doppler/métodos , Feminino , Seguimentos , Insuficiência Cardíaca/prevenção & controle , Insuficiência Cardíaca/terapia , Humanos , Injeções Intra-Arteriais , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/mortalidade , Isquemia Miocárdica/terapia , Miócitos Cardíacos/transplante , Cuidados Pós-Operatórios/métodos , Estudos Prospectivos , Valores de Referência , Medição de Risco , Análise de Sobrevida , Fatores de Tempo , Coleta de Tecidos e Órgãos , Transplante Autólogo/métodos , Resultado do Tratamento , Remodelação Ventricular/fisiologia
17.
Biochem Biophys Res Commun ; 423(1): 79-84, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22634007

RESUMO

BACKGROUND: Lipoprotein (a) (Lp(a)) is one of the risk factors for peripheral artery disease (PAD). Our previous report demonstrated that hepatocyte growth factor (HGF) gene therapy attenuated the impairment of collateral formation in Lp(a) transgenic mice. Since risk factors for atherosclerosis accelerate endothelial senescence and impair angiogenesis, we examined the role of Lp(a) in dysfunction and senescence of endothelial progenitor cells (EPC) and endothelial cells. METHODS: In vitro and in vivo incorporation assays were performed using ex-vivo expanded DiI-labeled human EPC. Senescence of cultured endothelial cells, production of oxidative stress and angiogenesis function were evaluated by SA-ß-galactosidase staining, dihydroethidium (DHE) staining and Matrigel assay, respectively. RESULTS: EPC transplantation significantly stimulated recovery of ischemic limb perfusion, while EPC pre-treated with Lp(a) did not increase ischemic limb perfusion. Impairment of angiogenesis by EPC with Lp(a) was associated with a significant decrease in CD31-positive capillaries and DiI-labeled EPC. Importantly, Lp(a) significantly accelerated the onset of senescence and production of reactive oxygen species (ROS) in human aortic endothelial cells, accompanied by a significant increase in the protein expression of p53 and p21. On the other hand, HGF significantly attenuated EPC dysfunction, senescence, ROS production, and p53 and p21 expression induced by Lp(a). CONCLUSION: Lp(a) might affect atherosclerosis via acceleration of senescence, ROS production, and functional impairment of the endothelial cell lineage. HGF might have inhibitory effects on these atherogenic actions of Lp(a).


Assuntos
Células Endoteliais/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Lipoproteína(a)/antagonistas & inibidores , Neovascularização Fisiológica , Células-Tronco/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/terapia , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Fator de Crescimento de Hepatócito/farmacologia , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/metabolismo , Isquemia/terapia , Lipoproteína(a)/metabolismo , Lipoproteína(a)/farmacologia , Camundongos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transplante de Células-Tronco , Células-Tronco/efeitos dos fármacos , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo
18.
Circ Res ; 107(2): 305-15, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20522802

RESUMO

RATIONALE: The ability of the human heart to regenerate large quantities of myocytes remains controversial, and the extent of myocyte renewal claimed by different laboratories varies from none to nearly 20% per year. OBJECTIVE: To address this issue, we examined the percentage of myocytes, endothelial cells, and fibroblasts labeled by iododeoxyuridine in postmortem samples obtained from cancer patients who received the thymidine analog for therapeutic purposes. Additionally, the potential contribution of DNA repair, polyploidy, and cell fusion to the measurement of myocyte regeneration was determined. METHODS AND RESULTS: The fraction of myocytes labeled by iododeoxyuridine ranged from 2.5% to 46%, and similar values were found in fibroblasts and endothelial cells. An average 22%, 20%, and 13% new myocytes, fibroblasts, and endothelial cells were generated per year, suggesting that the lifespan of these cells was approximately 4.5, 5, and 8 years, respectively. The newly formed cardiac cells showed a fully differentiated adult phenotype and did not express the senescence-associated protein p16(INK4a). Moreover, measurements by confocal microscopy and flow cytometry documented that the human heart is composed predominantly of myocytes with 2n diploid DNA content and that tetraploid and octaploid nuclei constitute only a small fraction of the parenchymal cell pool. Importantly, DNA repair, ploidy formation, and cell fusion were not implicated in the assessment of myocyte regeneration. CONCLUSIONS: Our findings indicate that the human heart has a significant growth reserve and replaces its myocyte and nonmyocyte compartment several times during the course of life.


Assuntos
Proliferação de Células , Células Endoteliais/patologia , Fibroblastos/patologia , Desenvolvimento Muscular , Miocárdio/patologia , Miócitos Cardíacos/patologia , Neoplasias/patologia , Adulto , Fatores Etários , Idoso , Animais , Autopsia , Morte Celular , Fusão Celular , Núcleo Celular/patologia , Proliferação de Células/efeitos dos fármacos , Reparo do DNA , Células Endoteliais/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Citometria de Fluxo , Humanos , Idoxuridina/uso terapêutico , Imuno-Histoquímica , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Desenvolvimento Muscular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Fenótipo , Poliploidia , Radiossensibilizantes/uso terapêutico , Ratos , Ratos Endogâmicos F344 , Regeneração , Fatores de Tempo , Adulto Jovem
19.
Cells ; 11(21)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359784

RESUMO

BACKGROUND: Rhabdomyolysis is the collapse of damaged skeletal muscle and the leakage of muscle-cell contents, such as electrolytes, myoglobin, and other sarcoplasmic proteins, into the circulation. The glomeruli filtered these products, leading to acute kidney injury (AKI) through several mechanisms, such as intratubular obstruction secondary to protein precipitation. The prognosis is highly mutable and depends on the underlying complications and etiologies. New therapeutic plans to reduce AKI are now needed. Up to now, several cellular pathways, with the nuclear factor kappa beta (NF-kB), as well as the proinflammatory effects on epithelial and tubular epithelial cells, have been recognized as the major pathway for the initiation of the matrix-producing cells in AKI. Recently, it has been mentioned that periostin (POSTN), an extracellular matrix protein, is involved in the development of inflammation through the modulation of the NF-kB pathway. However, how POSTN develops the inflammation protection in AKI by rhabdomyolysis is uncertain. This study aimed to investigate the role of POSTN in a rhabdomyolysis mice model of AKI induced by an intramuscular injection of 50% glycerol. METHODS: In vivo, we performed an intramuscular injection of 50% glycerol (5 mg/kg body weight) to make rhabdomyolysis-induced AKI. We examined the expression level of POSTN through the progression of AKI after glycerol intramuscular injection for C57BL/6J wildtype (WT) mice. We sacrificed mice at 72 h after glycerol injection. We made periostin-null mice to examine the role of POSTN in acute renal failure. The role of periostin was further examined through in vitro methods. The development of renal inflammation is linked with the NF-kB pathway. To examine the POSTN function, we administrated hemin (100 µM) on NIH-3T3 fibroblast cells, and the following signaling pathways were examined. RESULTS: The expression of periostin was highly increased, peaking at about 72 h after glycerol injection. The expression of inflammation-associated mRNAs such as monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-a) and IL-6, and tubular injury score in H-E staining were more reduced in POSTN-null mice than WT mice at 72 h after glycerol injection. CONCLUSION: POSTN was highly expressed in the kidney through rhabdomyolysis and was a positive regulator of AKI. Targeting POSTN might propose a new therapeutic strategy against the development of acute renal failure.


Assuntos
Injúria Renal Aguda , Moléculas de Adesão Celular , Animais , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/complicações , Injúria Renal Aguda/patologia , Modelos Animais de Doenças , Glicerol/farmacologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Rabdomiólise/complicações , Rabdomiólise/induzido quimicamente , Rabdomiólise/patologia , Moléculas de Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo
20.
Circ Res ; 105(7): 667-75, 13 p following 675, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19713535

RESUMO

RATIONALE: Neointimal hyperplasia contributes to atherosclerosis and restenosis after percutaneous coronary intervention. Vascular injury in each of these conditions results in the release of mitogenic growth factors and hormones that contribute to pathological vascular smooth muscle cell growth and inflammation. Hepatocyte growth factor (HGF) is known as an antiinflammatory growth factor, although it is downregulated in injured tissue. However, the precise mechanism how HGF reduces inflammation is unclear. OBJECTIVE: To elucidate the mechanism how HGF and its receptor c-Met reduces angiotensin II (Ang II)-induced inflammation. METHODS AND RESULTS: HGF reduced Ang II-induced vascular smooth muscle cell growth and inflammation by controlling translocation of SHIP2 (Src homology domain 2-containing inositol 5'-phosphatase 2), which led to Ang II-dependent degradation of epithelial growth factor receptor. Moreover, the present study also revealed a preventive effect of HGF on atherosclerotic change in an Ang II infusion and cuff HGF transgenic mouse model. CONCLUSIONS: These data suggest that the HGF/c-Met system might regulate extrinsic factor signaling that maintains the homeostasis of organs.


Assuntos
Angiotensina II/metabolismo , Aterosclerose/metabolismo , Receptores ErbB/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Inflamação/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Transdução de Sinais , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Aterosclerose/patologia , Proliferação de Células , Células Cultivadas , Receptores ErbB/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Fator de Crescimento de Hepatócito/genética , Humanos , Hiperplasia , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Proto-Oncogênicas c-met , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fatores de Tempo , Transfecção , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA