Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 13(6): 624-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24747780

RESUMO

To progress from the laboratory to commercial applications, it will be necessary to develop industrially scalable methods to produce large quantities of defect-free graphene. Here we show that high-shear mixing of graphite in suitable stabilizing liquids results in large-scale exfoliation to give dispersions of graphene nanosheets. X-ray photoelectron spectroscopy and Raman spectroscopy show the exfoliated flakes to be unoxidized and free of basal-plane defects. We have developed a simple model that shows exfoliation to occur once the local shear rate exceeds 10(4) s(-1). By fully characterizing the scaling behaviour of the graphene production rate, we show that exfoliation can be achieved in liquid volumes from hundreds of millilitres up to hundreds of litres and beyond. The graphene produced by this method performs well in applications from composites to conductive coatings. This method can be applied to exfoliate BN, MoS2 and a range of other layered crystals.

2.
Nanoscale ; 3(3): 839-55, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21253650

RESUMO

The development of more efficient electrical storage is a pressing requirement to meet future societal and environmental needs. This demand for more sustainable, efficient energy storage has provoked a renewed scientific and commercial interest in advanced capacitor designs in which the suite of experimental techniques and ideas that comprise nanotechnology are playing a critical role. Capacitors can be charged and discharged quickly and are one of the primary building blocks of many types of electrical circuit, from microprocessors to large-sale power supplies, but usually have relatively low energy storage capability when compared with batteries. The application of nanostructured materials with bespoke morphologies and properties to electrochemical supercapacitors is being intensively studied in order to provide enhanced energy density without comprising their inherent high power density and excellent cyclability. In particular, electrode materials that exploit physical adsorption or redox reactions of electrolyte ions are foreseen to bridge the performance disparity between batteries with high energy density and capacitors with high power density. In this review, we present some of the novel nanomaterial systems applied for electrochemical supercapacitors and show how material morphology, chemistry and physical properties are being tailored to provide enhanced electrochemical supercapacitor performance.


Assuntos
Cristalização/métodos , Fontes de Energia Elétrica , Eletrônica/instrumentação , Transferência de Energia , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Capacitância Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Oxirredução , Tamanho da Partícula
3.
Nanoscale ; 2(6): 967-75, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20648294

RESUMO

The dispersion and manipulation of carbon nanotubes (CNTs) are of great importance if we are to utilise the unique properties of CNTs in a range of biological, electrical and mechanical applications. Recently, a designed amphiphilic peptide helix termed nano-1 has been shown to solubilise CNTs in aqueous solution. Furthermore, the peptide is capable of assembling these coated tubes into fibres. We use a multiscale molecular dynamics approach to study the adsorption profile of nano-1 on a CNT surface. We find that nano-1 interacts with a CNT in a preferred orientation, such that its hydrophobic surface is in contact with the tube. The adsorption profile is unchanged upon increasing the number of peptides on the CNT. Interestingly, when few peptides are adsorbed onto the CNT surface we find that the secondary structure of the peptide is unstable. However, the helical secondary structure is stabilised upon increasing the number of peptides on the CNT surface. This study sheds light on the adsorption of peptides on CNTs, and may be exploitable to enhance the selective solubilisation and manipulation of CNTs.


Assuntos
Simulação de Dinâmica Molecular , Nanotubos de Carbono , Peptídeos/química , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Peptídeos/metabolismo , Estabilidade Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA