RESUMO
BACKGROUND: Eribulin is a microtubule-targeting agent approved for the treatment of advanced or metastatic breast cancer (BC) previously treated with anthracycline- and taxane-based regimens. PIK3CA mutation is associated with worse response to chemotherapy in oestrogen receptor-positive (ER+)/human epidermal growth factor receptor 2-negative (HER2-) metastatic BC. We aimed to evaluate the role of phosphoinositide 3-kinase (PI3K)/AKT pathway mutations in eribulin resistance. METHODS: Resistance to eribulin was evaluated in HER2- BC cell lines and patient-derived tumour xenografts, and correlated with a mutation in the PI3K/AKT pathway. RESULTS: Eleven out of 23 HER2- BC xenografts treated with eribulin exhibited disease progression. No correlation with ER status was detected. Among the resistant models, 64% carried mutations in PIK3CA, PIK3R1 or AKT1, but only 17% among the sensitive xenografts (P = 0.036). We observed that eribulin treatment induced AKT phosphorylation in vitro and in patient tumours. In agreement, the addition of PI3K inhibitors reversed primary and acquired resistance to eribulin in xenograft models, regardless of the genetic alterations in PI3K/AKT pathway or ER status. Mechanistically, PI3K blockade reduced p21 levels likely enabling apoptosis, thus sensitising to eribulin treatment. CONCLUSIONS: PI3K pathway activation induces primary resistance or early adaptation to eribulin, supporting the combination of PI3K inhibitors and eribulin for the treatment of HER2- BC patients.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos , Furanos/farmacologia , Cetonas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Proliferação de Células , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Pediatric cancers are rare diseases, and children without known germline predisposing conditions who develop a second malignancy during developmental ages are extremely rare. We present four such clinical cases and, through whole-genome and error-correcting ultra-deep duplex sequencing of tumor and normal samples, we explored the origin of the second malignancy in four children, uncovering different routes of development. The exposure to cytotoxic therapies was linked to the emergence of a secondary acute myeloid leukemia. A common somatic mutation acquired early during embryonic development was the driver of two solid malignancies in another child. In two cases, the two tumors developed from completely independent clones diverging during embryogenesis. Importantly, we demonstrate that platinum-based therapies contributed at least one order of magnitude more mutations per day of exposure than aging to normal tissues in these children. SIGNIFICANCE: Using whole-genome and error-correcting ultra-deep duplex sequencing, we uncover different origins for second neoplasms in four children. We also uncover the presence of platinum-related mutations across 10 normal tissues of exposed individuals, highlighting the impact that the use of cytotoxic therapies may have on cancer survivors. See related commentary by Pacyna and Nangalia, p. 900. This article is featured in Selected Articles from This Issue, p. 897.
Assuntos
Mutação , Segunda Neoplasia Primária , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Antineoplásicos/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Segunda Neoplasia Primária/genética , Sequenciamento Completo do GenomaRESUMO
Oral selective estrogen receptor degraders (SERD) could become the backbone of endocrine therapy (ET) for estrogen receptor-positive (ER+) breast cancer, as they achieve greater inhibition of ER-driven cancers than current ETs and overcome key resistance mechanisms. In this study, we evaluated the preclinical pharmacology and efficacy of the next-generation oral SERD camizestrant (AZD9833) and assessed ER-co-targeting strategies by combining camizestrant with CDK4/6 inhibitors (CDK4/6i) and PI3K/AKT/mTOR-targeted therapy in models of progression on CDK4/6i and/or ET. Camizestrant demonstrated robust and selective ER degradation, modulated ER-regulated gene expression, and induced complete ER antagonism and significant antiproliferation activity in ESR1 wild-type (ESR1wt) and mutant (ESR1m) breast cancer cell lines and patient-derived xenograft (PDX) models. Camizestrant also delivered strong antitumor activity in fulvestrant-resistant ESR1wt and ESR1m PDX models. Evaluation of camizestrant in combination with CDK4/6i (palbociclib or abemaciclib) in CDK4/6-naive and -resistant models, as well as in combination with PI3Kαi (alpelisib), mTORi (everolimus), or AKTi (capivasertib), indicated that camizestrant was active with CDK4/6i or PI3K/AKT/mTORi and that antitumor activity was further increased by the triple combination. The response was observed independently of PI3K pathway mutation status. Overall, camizestrant shows strong and broad antitumor activity in ER+ breast cancer as a monotherapy and when combined with CDK4/6i and PI3K/AKT/mTORi. SIGNIFICANCE: Camizestrant, a next-generation oral SERD, shows promise in preclinical models of ER+ breast cancer alone and in combination with CDK4/6 and PI3K/AKT/mTOR inhibitors to address endocrine resistance, a current barrier to treatment.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Receptores de Estrogênio/metabolismo , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases/metabolismo , Antagonistas de Estrogênios , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinase 4 Dependente de Ciclina , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêuticoRESUMO
PURPOSE: FGFR1 amplification (FGFR1amp) is recurrent in metastatic breast cancer (MBC) and is associated with resistance to endocrine therapy and CDK4/6 inhibitors (CDK4/6is). Multi-tyrosine kinase inhibitors (MTKIs) and selective pan-FGFR inhibitors (FGFRis) are being developed for FGFR1amp breast cancer. High-level FGFR amplification and protein expression by IHC have identified breast cancer responders to FGFRis or MTKIs, respectively. EXPERIMENTAL DESIGN: Here, we used preclinical models and patient samples to identify predictive biomarkers to these drugs. We evaluated the antitumor activity of an FGFRi and an MTKI in a collection of 17 breast cancer patient-derived xenografts (PDXs) harboring amplification in FGFR1/2/3/4 and in 10 patients receiving either an FGFRi/MTKI. mRNA levels were measured on FFPE tumor samples using two commercial strategies. Proliferation and angiogenesis were evaluated by detecting Ki-67 and CD31 in viable areas by immunofluorescence. RESULTS: High FGFR1-4 mRNA levels but not copy-number alteration (CNA) is associated with FGFRi response. Treatment with MTKIs showed higher response rates than with FGFRis (86% vs. 53%), regardless of the FGFR1-4 mRNA levels. FGFR-addicted PDXs exhibited an antiproliferative response to either FGFRis or MTKIs, and PDXs exclusively sensitive to MTKI exhibited an additional antiangiogenic response. Consistently, the clinical benefit of MTKIs was not associated with high FGFR1-4 mRNA levels and was observed in patients previously treated with antiangiogenic drugs. CONCLUSIONS: Tailored therapy with FGFRis in molecularly selected MBC based on high FGFR1-4 mRNA levels warrants prospective validation in patients with CDK4/6i-resistant luminal breast cancer and in patients with TNBC without targeted therapeutic options.
Assuntos
Neoplasias da Mama , RNA Mensageiro , Receptores Proteína Tirosina Quinases , Feminino , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de SinaisRESUMO
CDK4/6 inhibitors combined with endocrine therapy have demonstrated higher antitumor activity than endocrine therapy alone for the treatment of advanced estrogen receptor-positive breast cancer. Some of these tumors are de novo resistant to CDK4/6 inhibitors and others develop acquired resistance. Here, we show that p16 overexpression is associated with reduced antitumor activity of CDK4/6 inhibitors in patient-derived xenografts (n = 37) and estrogen receptor-positive breast cancer cell lines, as well as reduced response of early and advanced breast cancer patients to CDK4/6 inhibitors (n = 89). We also identified heterozygous RB1 loss as biomarker of acquired resistance and poor clinical outcome. Combination of the CDK4/6 inhibitor ribociclib with the PI3K inhibitor alpelisib showed antitumor activity in estrogen receptor-positive non-basal-like breast cancer patient-derived xenografts, independently of PIK3CA, ESR1 or RB1 mutation, also in drug de-escalation experiments or omitting endocrine therapy. Our results offer insights into predicting primary/acquired resistance to CDK4/6 inhibitors and post-progression therapeutic strategies.
Assuntos
Antineoplásicos , Neoplasias da Mama , Inibidores de Proteínas Quinases , Antineoplásicos/uso terapêutico , Biomarcadores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Estrogênio/metabolismo , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
PURPOSE: AZD5363/capivasertib is a pan-AKT catalytic inhibitor with promising activity in combination with paclitaxel in triple-negative metastatic breast cancer harboring PI3K/AKT-pathway alterations and in estrogen receptor-positive breast cancer in combination with fulvestrant. Here, we aimed to identify response biomarkers and uncover mechanisms of resistance to AZD5363 and its combination with paclitaxel. EXPERIMENTAL DESIGN: Genetic and proteomic markers were analyzed in 28 HER2-negative patient-derived xenografts (PDXs) and in patient samples, and correlated to AZD5363 sensitivity as single agent and in combination with paclitaxel. RESULTS: Four PDX were derived from patients receiving AZD5363 in the clinic which exhibited concordant treatment response. Mutations in PIK3CA/AKT1 and absence of mTOR complex 1 (mTORC1)-activating alterations, for example, in MTOR or TSC1, were associated with sensitivity to AZD5363 monotherapy. Interestingly, excluding PTEN from the composite biomarker increased its accuracy from 64% to 89%. Moreover, resistant PDXs exhibited low baseline pAKT S473 and residual pS6 S235 upon treatment, suggesting that parallel pathways bypass AKT/S6K1 signaling in these models. We identified two mechanisms of acquired resistance to AZD5363: cyclin D1 overexpression and loss of AKT1 p.E17K. CONCLUSIONS: This study provides insight into putative predictive biomarkers of response and acquired resistance to AZD5363 in HER2-negative metastatic breast cancer.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/genética , Neoplasias da Mama/terapia , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mama/patologia , Mama/cirurgia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Quimioterapia Adjuvante/métodos , Classe I de Fosfatidilinositol 3-Quinases/genética , Análise Mutacional de DNA , Feminino , Humanos , Mastectomia , Camundongos , Mutação , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Prognóstico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Spinocerebellar ataxia, autosomal recessive 16 (SCAR16) is caused by biallelic mutations in the STIP1 homology and U-box containing protein 1 (STUB1) gene encoding the ubiquitin E3 ligase and dimeric co-chaperone C-terminus of Hsc70-interacting protein (CHIP). It has been proposed that the disease mechanism is related to CHIP's impaired E3 ubiquitin ligase properties and/or interaction with its chaperones. However, there is limited knowledge on how these mutations affect the stability, folding, and protein structure of CHIP itself. To gain further insight, six previously reported pathogenic STUB1 variants (E28K, N65S, K145Q, M211I, S236T, and T246M) were expressed as recombinant proteins and studied using limited proteolysis, size-exclusion chromatography (SEC), and circular dichroism (CD). Our results reveal that N65S shows increased CHIP dimerization, higher levels of α-helical content, and decreased degradation rate compared with wild-type (WT) CHIP. By contrast, T246M demonstrates a strong tendency for aggregation, a more flexible protein structure, decreased levels of α-helical structures, and increased degradation rate compared with WT CHIP. E28K, K145Q, M211I, and S236T also show defects on structural properties compared with WT CHIP, although less profound than what observed for N65S and T246M. In conclusion, our results illustrate that some STUB1 mutations known to cause recessive SCAR16 have a profound impact on the protein structure, stability, and ability of CHIP to dimerize in vitro. These results add to the growing understanding on the mechanisms behind the disorder.
Assuntos
Mutação , Estabilidade Proteica , Desdobramento de Proteína , Ataxias Espinocerebelares/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Humanos , Agregados Proteicos , Conformação Proteica , Multimerização Proteica , Proteólise , Ataxias Espinocerebelares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
BACKGROUND: A subset of hereditary cerebellar ataxias is inherited as autosomal recessive traits (ARCAs). Classification of recessive ataxias due to phenotypic differences in the cerebellum and cerebellar structures is constantly evolving due to new identified disease genes. Recently, reports have linked mutations in genes involved in ubiquitination (RNF216, OTUD4, STUB1) to ARCA with hypogonadism. METHODS AND RESULTS: With a combination of homozygozity mapping and exome sequencing, we identified three mutations in STUB1 in two families with ARCA and cognitive impairment; a homozygous missense variant (c.194A > G, p.Asn65Ser) that segregated in three affected siblings, and a missense change (c.82G > A, p.Glu28Lys) which was inherited in trans with a nonsense mutation (c.430A > T, p.Lys144Ter) in another patient. STUB1 encodes CHIP (C-terminus of Heat shock protein 70 - Interacting Protein), a dual function protein with a role in ubiquitination as a co-chaperone with heat shock proteins, and as an E3 ligase. We show that the p.Asn65Ser substitution impairs CHIP's ability to ubiquitinate HSC70 in vitro, despite being able to self-ubiquitinate. These results are consistent with previous studies highlighting this as a critical residue for the interaction between CHIP and its co-chaperones. Furthermore, we show that the levels of CHIP are strongly reduced in vivo in patients' fibroblasts compared to controls. CONCLUSIONS: These results suggest that STUB1 mutations might cause disease by impacting not only the E3 ligase function, but also its protein interaction properties and protein amount. Whether the clinical heterogeneity seen in STUB1 ARCA can be related to the location of the mutations remains to be understood, but interestingly, all siblings with the p.Asn65Ser substitution showed a marked appearance of accelerated aging not previously described in STUB1 related ARCA, none display hormonal aberrations/clinical hypogonadism while some affected family members had diabetes, alopecia, uveitis and ulcerative colitis, further refining the spectrum of STUB1 related disease.