Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; : e14510, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287562

RESUMO

PURPOSE: The aim of this study was to assess the accuracy of a surface-guided radiotherapy (SGRT) system for setup and intra-fraction motion control in frameless non-coplanar stereotactic radiosurgery (fSRS) using actual patient data immobilized with two different types of open-faced masks and employing a novel SGRT systems settings. METHODS AND MATERIALS: Forty-four SRS patients were immobilized with two types of open-faced masks. Sixty lesions were treated, involving the analysis of 68 cone-beam scans (CBCT), 157 megavoltage (MV) images, and 521 SGRT monitoring sessions. The average SGRT translations/rotations and 3D vectors (MAG-Trasl and MAG-Rot) were compared with CBCT or antero-posterior MV images for 0° table or non-coplanar beams, respectively. The intrafraction control was evaluated based on the average shifts obtained from each monitoring session. To assess the association between the SGRT system and the CBCT, the two types of masks and the 3D vectors, a generalized estimating equations (GEE) regression analysis was performed. The Wilcoxon singed-rank test for paired samples was performed to detect differences in couch rotation with longitudinal (LNG) and lateral (LAT) translations and/or yaw. RESULTS: The average SGRT corrections were smaller than those detected by CBCT (≤0.5 mm and 0.1°), with largest differences in LNG and yaw. The GEE analysis indicated that the average MAG-Trasl, obtained by the SGRT system, was not statistically different (p = 0.09) for both mask types, while, the MAG-Rot was different (p = 0.01). For non-coplanar beams, the Wilcoxon singed-rank test demonstrated no significantly differences for the corrections (LNG, LAT, and yaw) for any table rotation except for LNG corrections at 65° (p = 0.04) and 75° (p = 0.03) table angle position; LAT shifts at 65° (p = 0.03) and 270° (p < 0.001) table angle position, and yaw rotation at 30° (p = 0.02) table angle position. The average intrafraction motion was < 0.1 mm and 0.1° for any table angle. CONCLUSION: The SGRT system used, along with the novel workflow performed, can achieve the setup and intra-fraction motion control accuracy required to perform non-coplanar fSRS treatments. Both masks ensure the accuracy required for fSRS while providing a suitable surface for monitoring.

2.
J Appl Clin Med Phys ; 15(6): 4663, 2014 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-25493505

RESUMO

The purpose of this study was to quantify the systematic and random errors for various disease sites when daily MVCT scans are acquired, and to analyze alterna- tive off-line verification protocols (OVP) with respect to the patient setup accuracy achieved. Alignment data from 389 patients (9,418 fractions) treated at ten differ- ent anatomic sites with daily image-guidance (IG) on a helical tomotherapy unit were analyzed. Moreover, six OVP were retrospectively evaluated. For each OVP, the frequency of the residual setup errors and additional margins required were calculated for the treatment sessions without image guidance. The magnitude of the three-dimensional vector displacement and its frequency were evaluated for all OVP. From daily IG, the main global systematic error was in the vertical direction (4.4-9.4 mm), and all rotations were negligible (less than 0.5°) for all anatomic sites. The lowest systematic and random errors were found for H&N and brain patients. All OVP were effective in reducing the mean systematic error to less than 1 mm and 0.2° in all directions and roll corrections for almost all treatment sites. The treatment margins needed to adapt the residual errors should be increased by 2-5 mm for brain and H&N, around 8 mm in the vertical direction for the other anatomic sites, and up to 19 mm in the longitudinal direction for abdomen patients. Almost 70% of the sessions presented a setup error of 3 mm for OVPs with an imaging frequency above 50%. Only for brain patients it would be feasible to apply an OVP because the residual setup error could be compensated for with a slight margin increase. However, daily imaging should be used for anatomic sites of difficult immobilization and/or large interfraction movement. 


Assuntos
Neoplasias/radioterapia , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Humanos , Erros de Configuração em Radioterapia/estatística & dados numéricos , Estudos Retrospectivos
3.
Med Phys ; 39(4): 1964-70, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22482617

RESUMO

PURPOSE: Recently, an international working group on nonstandard fields presented a new formalism for ionization chamber reference dosimetry of small and nonstandard fields [Alfonso et al., Med. Phys. 35, 5179-5186 (2008)] which has been adopted by AAPM TG-148. This work presents an experimental determination of the correction factors for reference dosimetry with an Exradin A1SL thimble ionization chamber in a TomoTherapy unit, focusing on: (i) machine-specific reference field, (ii) plan-class-specific reference field, and (iii) two clinical treatments. METHODS: Ionization chamber measurements were performed in the TomoTherapy unit for intermediate (machine-specific and plan-class-specific) calibration fields, based on the reference conditions defined by AAPM TG-148, and two clinical treatments (lung and head-and-neck). Alanine reference dosimetry was employed to determine absorbed dose to water at the point of interest for the fields under investigation. The corresponding chamber correction factors were calculated from alanine to ionization chamber measurements ratios. RESULTS: Two different methods of determining the beam quality correction factor k(Q,Q(0) ) for the A1SL ionization chamber in this TomoTherapy unit, where reference conditions for conventional beam quality determination cannot be met, result in consistent values. The observed values of overall correction factors obtained for intermediate and clinical fields are consistently around 0.98 with a typical expanded relative uncertainty of 2% (k = 2), which when considered make such correction factors compatible with unity. However, all of them are systematically lower than unity, which is shown to be significant when a hypothesis test assuming a t-student distribution is performed (p=1.8×10(-2)). Correction factors k(Q(clin),Q(pcsr) ) (f(clin),f(pcsr) ) and k(Q(clin),Q(msr) ) (f(clin),f(msr) ), which are needed for the computation of field factors for relative dosimetry of clinical beams, have been found to be very close to unity for two clinical treatments. CONCLUSIONS: The results indicate that the helical field deliveries in this study (including two clinical fields) do not introduce changes on the ion chamber correction factors for dosimetry. For those two specific clinical cases, ratios of chamber readings accurately represent field output factors. The values observed here for intermediate calibration fields are in agreement with previously published data based on alanine dosimetry but differ from values recently reported obtained via radiochromic dosimetry.


Assuntos
Guias de Prática Clínica como Assunto , Radiometria/instrumentação , Radiometria/normas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia Conformacional/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Dosagem Radioterapêutica , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA