Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(11): 1986-2005.e26, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35525246

RESUMO

Unlike copy number variants (CNVs), inversions remain an underexplored genetic variation class. By integrating multiple genomic technologies, we discover 729 inversions in 41 human genomes. Approximately 85% of inversions <2 kbp form by twin-priming during L1 retrotransposition; 80% of the larger inversions are balanced and affect twice as many nucleotides as CNVs. Balanced inversions show an excess of common variants, and 72% are flanked by segmental duplications (SDs) or retrotransposons. Since flanking repeats promote non-allelic homologous recombination, we developed complementary approaches to identify recurrent inversion formation. We describe 40 recurrent inversions encompassing 0.6% of the genome, showing inversion rates up to 2.7 × 10-4 per locus per generation. Recurrent inversions exhibit a sex-chromosomal bias and co-localize with genomic disorder critical regions. We propose that inversion recurrence results in an elevated number of heterozygous carriers and structural SD diversity, which increases mutability in the population and predisposes specific haplotypes to disease-causing CNVs.


Assuntos
Inversão Cromossômica , Duplicações Segmentares Genômicas , Inversão Cromossômica/genética , Variações do Número de Cópias de DNA/genética , Genoma Humano , Genômica , Humanos
2.
Genome Res ; 33(4): 496-510, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37164484

RESUMO

There has been tremendous progress in phased genome assembly production by combining long-read data with parental information or linked-read data. Nevertheless, a typical phased genome assembly generated by trio-hifiasm still generates more than 140 gaps. We perform a detailed analysis of gaps, assembly breaks, and misorientations from 182 haploid assemblies obtained from a diversity panel of 77 unique human samples. Although trio-based approaches using HiFi are the current gold standard, chromosome-wide phasing accuracy is comparable when using Strand-seq instead of parental data. Importantly, the majority of assembly gaps cluster near the largest and most identical repeats (including segmental duplications [35.4%], satellite DNA [22.3%], or regions enriched in GA/AT-rich DNA [27.4%]). Consequently, 1513 protein-coding genes overlap assembly gaps in at least one haplotype, and 231 are recurrently disrupted or missing from five or more haplotypes. Furthermore, we estimate that 6-7 Mbp of DNA are misorientated per haplotype irrespective of whether trio-free or trio-based approaches are used. Of these misorientations, 81% correspond to bona fide large inversion polymorphisms in the human species, most of which are flanked by large segmental duplications. We also identify large-scale alignment discontinuities consistent with 11.9 Mbp of deletions and 161.4 Mbp of insertions per haploid genome. Although 99% of this variation corresponds to satellite DNA, we identify 230 regions of euchromatic DNA with frequent expansions and contractions, nearly half of which overlap with 197 protein-coding genes. Such variable and incompletely assembled regions are important targets for future algorithmic development and pangenome representation.


Assuntos
DNA Satélite , Polimorfismo Genético , Humanos , DNA Satélite/genética , Haplótipos , Duplicações Segmentares Genômicas , Análise de Sequência de DNA
3.
Am J Hum Genet ; 109(4): 631-646, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35290762

RESUMO

Studies of de novo mutation (DNM) have typically excluded some of the most repetitive and complex regions of the genome because these regions cannot be unambiguously mapped with short-read sequencing data. To better understand the genome-wide pattern of DNM, we generated long-read sequence data from an autism parent-child quad with an affected female where no pathogenic variant had been discovered in short-read Illumina sequence data. We deeply sequenced all four individuals by using three sequencing platforms (Illumina, Oxford Nanopore, and Pacific Biosciences) and three complementary technologies (Strand-seq, optical mapping, and 10X Genomics). Using long-read sequencing, we initially discovered and validated 171 DNMs across two children-a 20% increase in the number of de novo single-nucleotide variants (SNVs) and indels when compared to short-read callsets. The number of DNMs further increased by 5% when considering a more complete human reference (T2T-CHM13) because of the recovery of events in regions absent from GRCh38 (e.g., three DNMs in heterochromatic satellites). In total, we validated 195 de novo germline mutations and 23 potential post-zygotic mosaic mutations across both children; the overall true substitution rate based on this integrated callset is at least 1.41 × 10-8 substitutions per nucleotide per generation. We also identified six de novo insertions and deletions in tandem repeats, two of which represent structural variants. We demonstrate that long-read sequencing and assembly, especially when combined with a more complete reference genome, increases the number of DNMs by >25% compared to previous studies, providing a more complete catalog of DNM compared to short-read data alone.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Feminino , Humanos , Mutação/genética , Nucleotídeos , Análise de Sequência de DNA , Software
4.
Genome Res ; 32(10): 1941-1951, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36180231

RESUMO

Gibbons are the most speciose family of living apes, characterized by a diverse chromosome number and rapid rate of large-scale rearrangements. Here we performed single-cell template strand sequencing (Strand-seq), molecular cytogenetics, and deep in silico analysis of a southern white-cheeked gibbon genome, providing the first comprehensive map of 238 previously hidden small-scale inversions. We determined that more than half are gibbon specific, at least fivefold higher than shown for other primate lineage-specific inversions, with a significantly high number of small heterozygous inversions, suggesting that accelerated evolution of inversions may have played a role in the high sympatric diversity of gibbons. Although the precise mechanisms underlying these inversions are not yet understood, it is clear that segmental duplication-mediated NAHR only accounts for a small fraction of events. Several genomic features, including gene density and repeat (e.g., LINE-1) content, might render these regions more break-prone and susceptible to inversion formation. In the attempt to characterize interspecific variation between southern and northern white-cheeked gibbons, we identify several large assembly errors in the current GGSC Nleu3.0/nomLeu3 reference genome comprising more than 49 megabases of DNA. Finally, we provide a list of 182 candidate genes potentially involved in gibbon diversification and speciation.


Assuntos
Hominidae , Hylobates , Animais , Hylobates/genética , Genoma , Primatas/genética , Inversão Cromossômica/genética , Cromossomos , Hominidae/genética
5.
Genome Res ; 30(11): 1680-1693, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33093070

RESUMO

Rhesus macaque is an Old World monkey that shared a common ancestor with human ∼25 Myr ago and is an important animal model for human disease studies. A deep understanding of its genetics is therefore required for both biomedical and evolutionary studies. Among structural variants, inversions represent a driving force in speciation and play an important role in disease predisposition. Here we generated a genome-wide map of inversions between human and macaque, combining single-cell strand sequencing with cytogenetics. We identified 375 total inversions between 859 bp and 92 Mbp, increasing by eightfold the number of previously reported inversions. Among these, 19 inversions flanked by segmental duplications overlap with recurrent copy number variants associated with neurocognitive disorders. Evolutionary analyses show that in 17 out of 19 cases, the Hominidae orientation of these disease-associated regions is always derived. This suggests that duplicated sequences likely played a fundamental role in generating inversions in humans and great apes, creating architectures that nowadays predispose these regions to disease-associated genetic instability. Finally, we identified 861 genes mapping at 156 inversions breakpoints, with some showing evidence of differential expression in human and macaque cell lines, thus highlighting candidates that might have contributed to the evolution of species-specific features. This study depicts the most accurate fine-scale map of inversions between human and macaque using a two-pronged integrative approach, such as single-cell strand sequencing and cytogenetics, and represents a valuable resource toward understanding of the biology and evolution of primate species.


Assuntos
Pontos de Quebra do Cromossomo , Inversão Cromossômica , Evolução Molecular , Macaca mulatta/genética , Animais , Doença/genética , Regulação da Expressão Gênica , Genoma , Genômica , Heterozigoto , Humanos , Hibridização in Situ Fluorescente , Recombinação Genética , Análise de Sequência de DNA , Análise de Célula Única
6.
Bioinformatics ; 37(19): 3356-3357, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33792647

RESUMO

SUMMARY: Single-cell DNA template strand sequencing (Strand-seq) enables chromosome length haplotype phasing, construction of phased assemblies, mapping sister-chromatid exchange events and structural variant discovery. The initial quality control of potentially thousands of single-cell libraries is still done manually by domain experts. ASHLEYS automates this tedious task, delivers near-expert performance and labels even large datasets in seconds. AVAILABILITY AND IMPLEMENTATION: github.com/friendsofstrandseq/ashleys-qc, MIT license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

7.
PLoS Genet ; 15(3): e1008075, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30917130

RESUMO

Human chromosome 15q25 is involved in several disease-associated structural rearrangements, including microdeletions and chromosomal markers with inverted duplications. Using comparative fluorescence in situ hybridization, strand-sequencing, single-molecule, real-time sequencing and Bionano optical mapping analyses, we investigated the organization of the 15q25 region in human and nonhuman primates. We found that two independent inversions occurred in this region after the fission event that gave rise to phylogenetic chromosomes XIV and XV in humans and great apes. One of these inversions is still polymorphic in the human population today and may confer differential susceptibility to 15q25 microdeletions and inverted duplications. The inversion breakpoints map within segmental duplications containing core duplicons of the GOLGA gene family and correspond to the site of an ancestral centromere, which became inactivated about 25 million years ago. The inactivation of this centromere likely released segmental duplications from recombination repression typical of centromeric regions. We hypothesize that this increased the frequency of ectopic recombination creating a hotspot of hominid inversions where dispersed GOLGA core elements now predispose this region to recurrent genomic rearrangements associated with disease.


Assuntos
Inversão Cromossômica , Cromossomos Humanos Par 15/genética , Duplicações Segmentares Genômicas , Animais , Autoantígenos/genética , Instabilidade Cromossômica , Evolução Molecular , Dosagem de Genes , Rearranjo Gênico , Variação Genética , Proteínas da Matriz do Complexo de Golgi/genética , Hominidae/genética , Humanos , Família Multigênica , Filogenia , Primatas/genética , Recombinação Genética , Especificidade da Espécie
8.
Bioinformatics ; 36(4): 1260-1261, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31504176

RESUMO

MOTIVATION: Strand-seq is a specialized single-cell DNA sequencing technique centered around the directionality of single-stranded DNA. Computational tools for Strand-seq analyses must capture the strand-specific information embedded in these data. RESULTS: Here we introduce breakpointR, an R/Bioconductor package specifically tailored to process and interpret single-cell strand-specific sequencing data obtained from Strand-seq. We developed breakpointR to detect local changes in strand directionality of aligned Strand-seq data, to enable fine-mapping of sister chromatid exchanges, germline inversion and to support global haplotype assembly. Given the broad spectrum of Strand-seq applications we expect breakpointR to be an important addition to currently available tools and extend the accessibility of this novel sequencing technique. AVAILABILITY AND IMPLEMENTATION: R/Bioconductor package https://bioconductor.org/packages/breakpointR. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Análise de Sequência de DNA
9.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807210

RESUMO

Accurate reference genome sequences provide the foundation for modern molecular biology and genomics as the interpretation of sequence data to study evolution, gene expression, and epigenetics depends heavily on the quality of the genome assembly used for its alignment. Correctly organising sequenced fragments such as contigs and scaffolds in relation to each other is a critical and often challenging step in the construction of robust genome references. We previously identified misoriented regions in the mouse and human reference assemblies using Strand-seq, a single cell sequencing technique that preserves DNA directionality Here we demonstrate the ability of Strand-seq to build and correct full-length chromosomes by identifying which scaffolds belong to the same chromosome and determining their correct order and orientation, without the need for overlapping sequences. We demonstrate that Strand-seq exquisitely maps assembly fragments into large related groups and chromosome-sized clusters without using new assembly data. Using template strand inheritance as a bi-allelic marker, we employ genetic mapping principles to cluster scaffolds that are derived from the same chromosome and order them within the chromosome based solely on directionality of DNA strand inheritance. We prove the utility of our approach by generating improved genome assemblies for several model organisms including the ferret, pig, Xenopus, zebrafish, Tasmanian devil and the Guinea pig.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Célula Única/métodos , Sequenciamento Completo do Genoma/métodos , Algoritmos , Alelos , Animais , Sequência de Bases , Mapeamento Cromossômico/métodos , Cromossomos , Genômica/métodos , Humanos , Análise de Sequência de DNA/métodos , Software
10.
Ann Hum Genet ; 84(2): 125-140, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31711268

RESUMO

The sequence and assembly of human genomes using long-read sequencing technologies has revolutionized our understanding of structural variation and genome organization. We compared the accuracy, continuity, and gene annotation of genome assemblies generated from either high-fidelity (HiFi) or continuous long-read (CLR) datasets from the same complete hydatidiform mole human genome. We find that the HiFi sequence data assemble an additional 10% of duplicated regions and more accurately represent the structure of tandem repeats, as validated with orthogonal analyses. As a result, an additional 5 Mbp of pericentromeric sequences are recovered in the HiFi assembly, resulting in a 2.5-fold increase in the NG50 within 1 Mbp of the centromere (HiFi 480.6 kbp, CLR 191.5 kbp). Additionally, the HiFi genome assembly was generated in significantly less time with fewer computational resources than the CLR assembly. Although the HiFi assembly has significantly improved continuity and accuracy in many complex regions of the genome, it still falls short of the assembly of centromeric DNA and the largest regions of segmental duplication using existing assemblers. Despite these shortcomings, our results suggest that HiFi may be the most effective standalone technology for de novo assembly of human genomes.


Assuntos
Biomarcadores/análise , Variação Genética , Genoma Humano , Haploidia , Mola Hidatiforme/genética , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Gravidez
11.
Genome Res ; 26(11): 1575-1587, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27472961

RESUMO

Identifying genomic features that differ between individuals and cells can help uncover the functional variants that drive phenotypes and disease susceptibilities. For this, single-cell studies are paramount, as it becomes increasingly clear that the contribution of rare but functional cellular subpopulations is important for disease prognosis, management, and progression. Until now, studying these associations has been challenged by our inability to map structural rearrangements accurately and comprehensively. To overcome this, we coupled single-cell sequencing of DNA template strands (Strand-seq) with custom analysis software to rapidly discover, map, and genotype genomic rearrangements at high resolution. This allowed us to explore the distribution and frequency of inversions in a heterogeneous cell population, identify several polymorphic domains in complex regions of the genome, and locate rare alleles in the reference assembly. We then mapped the entire genomic complement of inversions within two unrelated individuals to characterize their distinct inversion profiles and built a nonredundant global reference of structural rearrangements in the human genome. The work described here provides a powerful new framework to study structural variation and genomic heterogeneity in single-cell samples, whether from individuals for population studies or tissue types for biomarker discovery.


Assuntos
Inversão Cromossômica , Genoma Humano , Polimorfismo Genético , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Adulto , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Sangue Fetal/citologia , Humanos , Recém-Nascido , Masculino
12.
Genome Res ; 26(11): 1565-1574, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27646535

RESUMO

Haplotypes are fundamental to fully characterize the diploid genome of an individual, yet methods to directly chart the unique genetic makeup of each parental chromosome are lacking. Here we introduce single-cell DNA template strand sequencing (Strand-seq) as a novel approach to phasing diploid genomes along the entire length of all chromosomes. We demonstrate this by building a complete haplotype for a HapMap individual (NA12878) at high accuracy (concordance 99.3%), without using generational information or statistical inference. By use of this approach, we mapped all meiotic recombination events in a family trio with high resolution (median range ∼14 kb) and phased larger structural variants like deletions, indels, and balanced rearrangements like inversions. Lastly, the single-cell resolution of Strand-seq allowed us to observe loss of heterozygosity regions in a small number of cells, a significant advantage for studies of heterogeneous cell populations, such as cancer cells. We conclude that Strand-seq is a unique and powerful approach to completely phase individual genomes and map inheritance patterns in families, while preserving haplotype differences between single cells.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos Humanos/genética , Haplótipos , Análise de Célula Única/métodos , Linhagem Celular , Projeto HapMap , Recombinação Homóloga , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , Mutação
13.
Bioinformatics ; 34(13): i115-i123, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29949971

RESUMO

Motivation: Current sequencing technologies are able to produce reads orders of magnitude longer than ever possible before. Such long reads have sparked a new interest in de novo genome assembly, which removes reference biases inherent to re-sequencing approaches and allows for a direct characterization of complex genomic variants. However, even with latest algorithmic advances, assembling a mammalian genome from long error-prone reads incurs a significant computational burden and does not preclude occasional misassemblies. Both problems could potentially be mitigated if assembly could commence for each chromosome separately. Results: To address this, we show how single-cell template strand sequencing (Strand-seq) data can be leveraged for this purpose. We introduce a novel latent variable model and a corresponding Expectation Maximization algorithm, termed SaaRclust, and demonstrates its ability to reliably cluster long reads by chromosome. For each long read, this approach produces a posterior probability distribution over all chromosomes of origin and read directionalities. In this way, it allows to assess the amount of uncertainty inherent to sparse Strand-seq data on the level of individual reads. Among the reads that our algorithm confidently assigns to a chromosome, we observed more than 99% correct assignments on a subset of Pacific Bioscience reads with 30.1× coverage. To our knowledge, SaaRclust is the first approach for the in silico separation of long reads by chromosome prior to assembly. Availability and implementation: https://github.com/daewoooo/SaaRclust.


Assuntos
Cromossomos Humanos , Simulação por Computador , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Algoritmos , Feminino , Genoma Humano , Humanos , Análise de Sequência de DNA/métodos
14.
Nat Methods ; 9(11): 1107-12, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23042453

RESUMO

DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it possible to map SCEs at orders-of-magnitude greater resolution than was previously possible. On average, murine embryonic stem (mES) cells exhibit eight SCEs, which are detected at a resolution of up to 23 bp. Strikingly, Strand-seq of 62 single mES cells predicts that the mm 9 mouse reference genome assembly contains at least 17 incorrectly oriented segments totaling nearly 1% of the genome. These misoriented contigs and fragments have persisted through several iterations of the mouse reference genome and have been difficult to detect using conventional sequencing techniques. The ability to map SCE events at high resolution and fine-tune reference genomes by Strand-seq dramatically expands the scope of single-cell sequencing.


Assuntos
Análise de Sequência de DNA/métodos , Troca de Cromátide Irmã , Moldes Genéticos , Animais , Células Cultivadas , Genômica , Camundongos
15.
Nat Genet ; 56(6): 1134-1146, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806714

RESUMO

The functional impact and cellular context of mosaic structural variants (mSVs) in normal tissues is understudied. Utilizing Strand-seq, we sequenced 1,133 single-cell genomes from 19 human donors of increasing age, and discovered the heterogeneous mSV landscapes of hematopoietic stem and progenitor cells. While mSVs are continuously acquired throughout life, expanded subclones in our cohort are confined to individuals >60. Cells already harboring mSVs are more likely to acquire additional somatic structural variants, including megabase-scale segmental aneuploidies. Capitalizing on comprehensive single-cell micrococcal nuclease digestion with sequencing reference data, we conducted high-resolution cell-typing for eight hematopoietic stem and progenitor cells. Clonally expanded mSVs disrupt normal cellular function by dysregulating diverse cellular pathways, and enriching for myeloid progenitors. Our findings underscore the contribution of mSVs to the cellular and molecular phenotypes associated with the aging hematopoietic system, and establish a foundation for deciphering the molecular links between mSVs, aging and disease susceptibility in normal tissues.


Assuntos
Células-Tronco Hematopoéticas , Mosaicismo , Humanos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Pessoa de Meia-Idade , Adulto , Análise de Célula Única/métodos , Idoso , Feminino , Masculino , Envelhecimento/genética , Idoso de 80 Anos ou mais , Células-Tronco/metabolismo , Variação Genética
16.
Blood ; 117(16): 4253-61, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21398220

RESUMO

Src homology 2 domain-containing phosphatase 2 (Shp2), encoded by Ptpn11, is a member of the nonreceptor protein-tyrosine phosphatase family, and functions in cell survival, proliferation, migration, and differentiation in many tissues. Here we report that loss of Ptpn11 in murine hematopoietic cells leads to bone marrow aplasia and lethality. Mutant mice show rapid loss of hematopoietic stem cells (HSCs) and immature progenitors of all hematopoietic lineages in a gene dosage-dependent and cell-autonomous manner. Ptpn11-deficient HSCs and progenitors undergo apoptosis concomitant with increased Noxa expression. Mutant HSCs/progenitors also show defective Erk and Akt activation in response to stem cell factor and diminished thrombopoietin-evoked Erk activation. Activated Kras alleviates the Ptpn11 requirement for colony formation by progenitors and cytokine/growth factor responsiveness of HSCs, indicating that Ras is functionally downstream of Shp2 in these cells. Thus, Shp2 plays a critical role in controlling the survival and maintenance of HSCs and immature progenitors in vivo.


Assuntos
Medula Óssea/patologia , Deleção de Genes , Células-Tronco Hematopoéticas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Animais , Ciclo Celular , Morte Celular , Epistasia Genética , Células-Tronco Hematopoéticas/citologia , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
17.
Genome Biol ; 24(1): 100, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37122002

RESUMO

The telomere-to-telomere (T2T) complete human reference has significantly improved our ability to characterize genome structural variation. To understand its impact on inversion polymorphisms, we remapped data from 41 genomes against the T2T reference genome and compared it to the GRCh38 reference. We find a ~ 21% increase in sensitivity improving mapping of 63 inversions on the T2T reference. We identify 26 misorientations within GRCh38 and show that the T2T reference is three times more likely to represent the correct orientation of the major human allele. Analysis of 10 additional samples reveals novel rare inversions at chromosomes 15q25.2, 16p11.2, 16q22.1-23.1, and 22q11.21.


Assuntos
Genoma Humano , Polimorfismo Genético , Humanos , Variação Estrutural do Genoma , Inversão Cromossômica
18.
Nat Biotechnol ; 41(6): 832-844, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36424487

RESUMO

Somatic structural variants (SVs) are widespread in cancer, but their impact on disease evolution is understudied due to a lack of methods to directly characterize their functional consequences. We present a computational method, scNOVA, which uses Strand-seq to perform haplotype-aware integration of SV discovery and molecular phenotyping in single cells by using nucleosome occupancy to infer gene expression as a readout. Application to leukemias and cell lines identifies local effects of copy-balanced rearrangements on gene deregulation, and consequences of SVs on aberrant signaling pathways in subclones. We discovered distinct SV subclones with dysregulated Wnt signaling in a chronic lymphocytic leukemia patient. We further uncovered the consequences of subclonal chromothripsis in T cell acute lymphoblastic leukemia, which revealed c-Myb activation, enrichment of a primitive cell state and informed successful targeting of the subclone in cell culture, using a Notch inhibitor. By directly linking SVs to their functional effects, scNOVA enables systematic single-cell multiomic studies of structural variation in heterogeneous cell populations.


Assuntos
Cromotripsia , Leucemia , Neoplasias , Humanos , Neoplasias/genética , Leucemia/genética , Rearranjo Gênico , Linhagem Celular , Variação Estrutural do Genoma
19.
Nat Biotechnol ; 39(3): 302-308, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33288906

RESUMO

Human genomes are typically assembled as consensus sequences that lack information on parental haplotypes. Here we describe a reference-free workflow for diploid de novo genome assembly that combines the chromosome-wide phasing and scaffolding capabilities of single-cell strand sequencing1,2 with continuous long-read or high-fidelity3 sequencing data. Employing this strategy, we produced a completely phased de novo genome assembly for each haplotype of an individual of Puerto Rican descent (HG00733) in the absence of parental data. The assemblies are accurate (quality value > 40) and highly contiguous (contig N50 > 23 Mbp) with low switch error rates (0.17%), providing fully phased single-nucleotide variants, indels and structural variants. A comparison of Oxford Nanopore Technologies and Pacific Biosciences phased assemblies identified 154 regions that are preferential sites of contig breaks, irrespective of sequencing technology or phasing algorithms.


Assuntos
Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pais , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Algoritmos , Haplótipos , Humanos , Porto Rico/etnologia
20.
Nat Genet ; 52(8): 849-858, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32541924

RESUMO

Inversions play an important role in disease and evolution but are difficult to characterize because their breakpoints map to large repeats. We increased by sixfold the number (n = 1,069) of previously reported great ape inversions by using single-cell DNA template strand and long-read sequencing. We find that the X chromosome is most enriched (2.5-fold) for inversions, on the basis of its size and duplication content. There is an excess of differentially expressed primate genes near the breakpoints of large (>100 kilobases (kb)) inversions but not smaller events. We show that when great ape lineage-specific duplications emerge, they preferentially (approximately 75%) occur in an inverted orientation compared to that at their ancestral locus. We construct megabase-pair scale haplotypes for individual chromosomes and identify 23 genomic regions that have recurrently toggled between a direct and an inverted state over 15 million years. The direct orientation is most frequently the derived state for human polymorphisms that predispose to recurrent copy number variants associated with neurodevelopmental disease.


Assuntos
Inversão Cromossômica/genética , Genoma/genética , Hominidae/genética , Animais , Cromossomos/genética , Variações do Número de Cópias de DNA/genética , Evolução Molecular , Feminino , Haplótipos/genética , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA