Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279224

RESUMO

Many large-scale studies show that exogenous erythropoietin, erythropoiesis-stimulating agents, lack any renoprotective effects. We investigated the effects of endogenous erythropoietin on renal function in kidney ischemic reperfusion injury (IRI) using the prolyl hydroxylase domain (PHD) inhibitor, Roxadustat (ROX). Four h of hypoxia (7% O2) and 4 h treatment by ROX prior to IRI did not improve renal function. In contrast, 24-72 h pretreatment by ROX significantly improved the decline of renal function caused by IRI. Hypoxia and 4 h ROX increased interstitial cells-derived Epo production by 75- and 6-fold, respectively, before IRI, and worked similarly to exogenous Epo. ROX treatment for 24-72 h increased Epo production during IRI by 9-fold. Immunohistochemistry revealed that 24 h ROX treatment induced Epo production in proximal and distal tubules and worked similarly to endogenous Epo. Our data show that tubular endogenous Epo production induced by 24-72 h ROX treatment results in renoprotection but peritubular exogenous Epo production by interstitial cells induced by hypoxia and 4 h ROX treatment did not. Stimulation of tubular, but not peritubular, Epo production may link to renoprotection.


Assuntos
Eritropoetina , Inibidores de Prolil-Hidrolase , Traumatismo por Reperfusão , Humanos , Eritropoetina/farmacologia , Rim , Epoetina alfa/farmacologia , Inibidores de Prolil-Hidrolase/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Hipóxia
2.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047509

RESUMO

We previously showed that the phosphatases PP1/PP2A and PP2B dephosphorylate the water channel, AQP2, suggesting their role in water reabsorption. In this study, we investigated whether protein phosphatase 2A (PP2A) and protein phosphatase 2B (PP2B or calcineurin), which are present in the inner medullary collecting duct (IMCD), are regulators of urea and water permeability. Inhibition of calcineurin by tacrolimus increased both basal and vasopressin-stimulated osmotic water permeability in perfused rat IMCDs. However, tacrolimus did not affect osmotic water permeability in the presence of aldosterone. Inhibition of PP2A by calyculin increased both basal and vasopressin-stimulated osmotic water permeability, and aldosterone reversed the increase by calyculin. Previous studies showed that adrenomedullin (ADM) activates PP2A and decreases osmotic water permeability. Inhibition of PP2A by calyculin prevented the ADM-induced decrease in water reabsorption. ADM reduced the phosphorylation of AQP2 at serine 269 (pSer269 AQP2). Urea is linked to water reabsorption by building up hyperosmolality in the inner medullary interstitium. Calyculin increased urea permeability and phosphorylated UT-A1. Our results indicate that phosphatases regulate water reabsorption. Aldosterone and adrenomedullin decrease urea or osmotic water permeability by acting through calcineurin and PP2A, respectively. PP2A may regulate water reabsorption by dephosphorylating pSer269, AQP2, and UT-A1.


Assuntos
Túbulos Renais Coletores , Proteínas de Membrana Transportadoras , Ratos , Animais , Ratos Sprague-Dawley , Proteínas de Membrana Transportadoras/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Tacrolimo/farmacologia , Água/metabolismo , Adrenomedulina , Aquaporina 2/metabolismo , Calcineurina/metabolismo , Ureia/farmacologia , Ureia/metabolismo , Aldosterona/metabolismo , Vasopressinas/metabolismo , Permeabilidade , Túbulos Renais Coletores/metabolismo
3.
Molecules ; 28(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298922

RESUMO

Detection of erythropoietin (Epo) was difficult until a method was developed by the World Anti-Doping Agency (WADA). WADA recommended the Western blot technique using isoelectric focusing (IEF)-PAGE to show that natural Epo and injected erythropoiesis-stimulating agents (ESAs) appear in different pH areas. Next, they used sodium N-lauroylsarcosinate (SAR)-PAGE for better differentiation of pegylated proteins, such as epoetin ß pegol. Although WADA has recommended the use of pre-purification of samples, we developed a simple Western blotting method without pre-purification of samples. Instead of pre-purification, we used deglycosylation of samples before SDS-PAGE. The double detection of glycosylated and deglycosylated Epo bands increases the reliability of the detection of Epo protein. All of the endogenous Epo and exogenous ESAs shift to 22 kDa, except for Peg-bound epoetin ß pegol. All endogenous Epo and exogenous ESAs were detected as 22 kDa deglycosylated Epo by liquid chromatography/mass spectrum (LC/MS) analysis. The most important factor for the detection of Epo is the selection of the antibody against Epo. WADA recommended clone AE7A5, and we used sc-9620. Both antibodies are useful for the detection of Epo protein by Western blotting.


Assuntos
Líquidos Corporais , Eritropoetina , Reprodutibilidade dos Testes , Focalização Isoelétrica/métodos , Western Blotting , Anticorpos , Eletroforese em Gel de Poliacrilamida , Detecção do Abuso de Substâncias/métodos , Proteínas Recombinantes
4.
Molecules ; 27(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35164384

RESUMO

Anemia is a major complication of chronic renal failure. To treat this anemia, prolylhydroxylase domain enzyme (PHD) inhibitors as well as erythropoiesis-stimulating agents (ESAs) have been used. Although PHD inhibitors rapidly stimulate erythropoietin (Epo) production, the precise sites of Epo production following the administration of these drugs have not been identified. We developed a novel method for the detection of the Epo protein that employs deglycosylation-coupled Western blotting. With protein deglycosylation, tissue Epo contents can be quantified over an extremely wide range. Using this method, we examined the effects of the PHD inhibitor, Roxadustat (ROX), and severe hypoxia on Epo production in various tissues in rats. We observed that ROX increased Epo mRNA expression in both the kidneys and liver. However, Epo protein was detected in the kidneys but not in the liver. Epo protein was also detected in the salivary glands, spleen, epididymis and ovaries. However, both PHD inhibitors (ROX) and severe hypoxia increased the Epo protein abundance only in the kidneys. These data show that, while Epo is produced in many tissues, PHD inhibitors as well as severe hypoxia regulate Epo production only in the kidneys.


Assuntos
Eritropoetina/metabolismo , Glicina/análogos & derivados , Isoquinolinas/farmacologia , Inibidores de Prolil-Hidrolase/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Animais , Eritropoetina/análise , Eritropoetina/genética , Feminino , Glicina/farmacologia , Hipóxia/genética , Hipóxia/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
5.
FASEB J ; 34(6): 8296-8309, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367640

RESUMO

Uremic cardiomyopathy, characterized by hypertension, cardiac hypertrophy, and fibrosis, is a complication of chronic kidney disease (CKD). Urea transporter (UT) inhibition increases the excretion of water and urea, but the effect on uremic cardiomyopathy has not been studied. We tested UT inhibition by dimethylthiourea (DMTU) in 5/6 nephrectomy mice. This treatment suppressed CKD-induced hypertension and cardiac hypertrophy. In CKD mice, cardiac fibrosis was associated with upregulation of UT and vimentin abundance. Inhibition of UT suppressed vimentin amount. Left ventricular mass index in DMTU-treated CKD was less compared with non-treated CKD mice as measured by echocardiography. Nephrectomy was performed in UT-A1/A3 knockout (UT-KO) to further confirm our finding. UT-A1/A3 deletion attenuates the CKD-induced increase in cardiac fibrosis and hypertension. The amount of α-smooth muscle actin and tgf-ß were significantly less in UT-KO with CKD than WT/CKD mice. To study the possibility that UT inhibition could benefit heart, we measured the mRNA of renin and angiotensin-converting enzyme (ACE), and found both were sharply increased in CKD heart; DMTU treatment and UT-KO significantly abolished these increases. Conclusion: Inhibition of UT reduced hypertension, cardiac fibrosis, and improved heart function. These changes are accompanied by inhibition of renin and ACE.


Assuntos
Cardiomiopatias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Insuficiência Renal Crônica/metabolismo , Ureia/metabolismo , Actinas/metabolismo , Animais , Cardiomegalia/metabolismo , Fibrose/metabolismo , Ventrículos do Coração/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptidil Dipeptidase A/metabolismo , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transportadores de Ureia
6.
Molecules ; 26(17)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34500833

RESUMO

The kidney is a main site of erythropoietin production in the body. We developed a new method for the detection of Epo protein by deglycosylation-coupled Western blotting. Detection of deglycosylated Epo enables the examination of small changes in Epo production. Using this method, we investigated the effects of angiotensin II (ATII) on Epo production in the kidney. ATII stimulated the plasma Epo concentration; Epo, HIF2α, and PHD2 mRNA expression in nephron segments in the renal cortex and outer medulla; and Epo protein expression in the renal cortex. In situ hybridization and immunohistochemistry revealed that ATII stimulates Epo mRNA and protein expression not only in proximal tubules but also in collecting ducts, especially in intercalated cells. These data support the regulation of Epo production in the kidney by the renin-angiotensin-aldosterone system (RAS).


Assuntos
Angiotensina II/farmacologia , Eritropoetina/metabolismo , Rim/metabolismo , Fígado/metabolismo , Animais , Western Blotting , Humanos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos
7.
Am J Physiol Renal Physiol ; 318(5): F1160-F1166, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32174141

RESUMO

Renal fibrosis is a major contributor to the development and progression of chronic kidney disease. A low-protein diet can reduce the progression of chronic kidney disease and reduce the development of renal fibrosis, although the mechanism is not well understood. Urea reabsorption into the inner medulla is regulated by inner medullary urea transporter (UT)-A1 and UT-A3. Inhibition or knockout of UT-A1/A3 will reduce interstitial urea accumulation, which may be beneficial in reducing renal fibrosis. To test this hypothesis, the effect of unilateral ureteral obstruction (UUO) was compared in wild-type (WT) and UT-A1/A3 knockout mice. UUO causes increased extracellular matrix associated with increases in transforming growth factor-ß, vimentin, and α-smooth muscle actin (α-SMA). In WT mice, UUO increased the abundance of three markers of fibrosis: transforming growth factor-ß, vimentin, and α-SMA. In contrast, in UT-A1/A3 knockout mice, the increase following UUO was significantly reduced. Consistent with the Western blot results, immunohistochemical staining showed that the levels of vimentin and α-SMA were increased in WT mice with UUO and that the increase was reduced in UT-A1/A3 knockout mice with UUO. Masson's trichrome staining showed increased collagen in WT mice with UUO, which was reduced in UT-A1/A3 knockout mice with UUO. We conclude that reduced UT activity reduces the severity of renal fibrosis following UUO.


Assuntos
Nefropatias/metabolismo , Rim/patologia , Proteínas de Membrana Transportadoras/deficiência , Obstrução Ureteral/complicações , Actinas/metabolismo , Animais , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Fibrose , Rim/metabolismo , Nefropatias/etiologia , Nefropatias/patologia , Nefropatias/prevenção & controle , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Índice de Gravidade de Doença , Fator de Crescimento Transformador beta/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Vimentina/metabolismo , Transportadores de Ureia
8.
Am J Physiol Cell Physiol ; 316(2): C162-C174, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462540

RESUMO

Mammalian glycerophosphodiesterases (GDEs) were recently shown to be involved in multiple cellular signaling pathways. This study showed that decreased GDE5 expression results in accumulation of intracellular glycerophosphocholine (GPC), showing that GDE5 is actively involved in GPC/choline metabolism in 3T3-L1 adipocytes. Using 3T3-L1 adipocytes, we further studied the biological significance of GPC/choline metabolism during adipocyte differentiation. Inhibition of GDE5 suppressed the formation of lipid droplets, which is accompanied by the decreased expression of adipocyte differentiation markers. We further showed that the decreased GDE5 expression suppressed mitotic clonal expansion (MCE) of preadipocytes. Decreased expression of CTP: phosphocholine cytidylyltransferase (CCTß), a rate-limiting enzyme for phosphatidylcholine (PC) synthesis, is similarly able to inhibit MCE and PC synthesis; however, the decreased GDE5 expression resulted in accumulation of intracellular GPC but did not affect PC synthesis. Furthermore, we showed that mRNAs of proteoglycans and transporters for organic osmolytes are significantly upregulated and that intracellular amino acids and urea levels are altered in response to GDE5 inhibition. Finally, we showed that reduction of GDE5 expression increased lactate dehydrogenase release from preadipocytes. These observations indicate that decreased GDE5 expression can suppress adipocyte differentiation not through the PC pathway but possibly by intracellular GPC accumulation. These results provide insight into the roles of mammalian GDEs and their dependence upon osmotic regulation by altering intracellular GPC levels.


Assuntos
Adipogenia/fisiologia , Glicerilfosforilcolina/metabolismo , Líquido Intracelular/metabolismo , Mitose/fisiologia , Fosfolipases/antagonistas & inibidores , Fosfolipases/metabolismo , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Animais , Líquido Intracelular/efeitos dos fármacos , Camundongos , Mitose/efeitos dos fármacos , Células NIH 3T3 , RNA Interferente Pequeno/farmacologia
9.
Am J Physiol Renal Physiol ; 317(5): F1331-F1341, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31509007

RESUMO

Posttranslational modifications are essential for the regulation of urea transporter-A1 (UT-A1), among which ubiquitination is a rather attractive and complex issue. Previously, our group reported that murine double minute 2 (MDM2) is one of the E3 ubiquitin ligases for UT-A1, and, later, we showed that ubiquitination contributes to the subcellular trafficking and stability of UT-A1. In the present study, we discovered that MDM2 interacts with UT-A1 in an AP50 (a component of the clathrin-coated pit)-dependent manner. However, their binding is irrelevant to the phosphorylatory status of UT-A1. Next, our findings indicated that MDM2 decreases the stability of either total or membrane UT-A1. On the cell membrane, MDM2 and ubiquitinated UT-A1 are both distributed in the lipid raft domain, and their linkage is obviously enhanced under forskolin (FSK) stimulation. In line with these results, in the diabetic rat, not only MDM2 but also ubiquitinated UT-A1 are intensified. Also, in vitro high glucose and angiotensin II play similar roles as FSK does on the association of MDM2 with UT-A1. In conclusion, MDM2 binds with UT-A1 and mediates its ubiquitination and degradation in an AP50-dependent manner, and their binding capacity is strengthened under FSK and diabetic milieu.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Sequência de Aminoácidos , Animais , Colforsina/farmacologia , Cães , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Masculino , Microdomínios da Membrana , Proteínas de Membrana Transportadoras/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Ratos , Ratos Sprague-Dawley , Ubiquitinação , Transportadores de Ureia
10.
Am J Physiol Renal Physiol ; 316(3): F539-F549, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30539654

RESUMO

Although the role of urea in urine concentration is known, the effect of urea handling by the urea transporters (UTs), UT-A1 and UT-A3, on sodium balance remains elusive. Serum and urinary sodium concentration is similar between wild-type mice (WT) and UT-A3 null (UT-A3 KO) mice; however, mice lacking both UT-A1 and UT-A3 (UT-A1/A3 KO) have significantly lower serum sodium and higher urinary sodium. Protein expression of renal sodium transporters is unchanged among all three genotypes. WT, UT-A3 KO, and UT-A1/A3 KO acutely respond to hydrochlorothiazide and furosemide; however, UT-A1/A3 KO fail to show a diuretic or natriuretic response following amiloride administration, indicating that baseline epithelial Na+ channel (ENaC) activity is impaired. UT-A1/A3 KO have more ENaC at the apical membrane than WT mice, and single-channel analysis of ENaC in split-open inner medullary collecting duct (IMCD) isolated in saline shows that ENaC channel density and open probability is higher in UT-A1/A3 KO than WT. UT-A1/A3 KO excrete more urinary nitric oxide (NO), a paracrine inhibitor of ENaC, and inner medullary nitric oxide synthase 1 mRNA expression is ~40-fold higher than WT. Because endogenous NO is unstable, ENaC activity was reassessed in split-open IMCD with the NO donor PAPA NONOate [1-propanamine-3-(2-hydroxy-2-nitroso-1-propylhydrazine)], and ENaC activity was almost abolished in UT-A1/A3 KO. In summary, loss of both UT-A1 and UT-A3 (but not UT-A3 alone) causes elevated medullary NO production and salt wasting. NO inhibition of ENaC, despite elevated apical accumulation of ENaC in UT-A1/A3 KO IMCD, appears to be the main contributor to natriuresis in UT-A1/A3 KO mice.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Medula Renal/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Óxido Nítrico/metabolismo , Sódio/metabolismo , Animais , Transporte de Íons/fisiologia , Capacidade de Concentração Renal/fisiologia , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Transportadores de Ureia
11.
NMR Biomed ; 32(1): e4028, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30426590

RESUMO

Renal urea handling is central to the urine concentrating mechanism, and as such the ability to image urea transport in the kidney is an important potential imaging biomarker for renal functional assessment. Glucagon levels associated with changes in dietary protein intake have been shown to influence renal urea handling; however, the exact mechanism has still to be fully understood. Here we investigate renal function and osmolite distribution using [13 C,15 N] urea dynamics and 23 Na distribution before and 60 min after glucagon infusion in six female rats. Glucagon infusion increased the renal [13 C,15 N] urea mean transit time by 14%, while no change was seen in the sodium distribution, glomerular filtration rate or oxygen consumption. This change is related to the well-known effect of increased urea excretion associated with glucagon infusion, independent of renal functional effects. This study demonstrates for the first time that hyperpolarized 13 C-urea enables monitoring of renal urinary excretion effects in vivo.


Assuntos
Isótopos de Carbono/metabolismo , Glucagon/administração & dosagem , Hemodinâmica , Rim/fisiologia , Ureia/metabolismo , Animais , Meios de Contraste/química , Feminino , Concentração Osmolar , Ratos Wistar , Processamento de Sinais Assistido por Computador , Sódio/urina
12.
Am J Phys Anthropol ; 168(4): 705-716, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30706445

RESUMO

OBJECTIVES: Evidence from industrialized populations suggests that urine concentrating ability declines with age. However, lifestyle factors including episodic protein intake and low hypertension may help explain differences between populations. Whether this age-related decline occurs among small-scale populations with active lifestyles and non-Western diets is unknown. We test the universality of age-related urine concentration decline. MATERIALS AND METHODS: We used urine specific gravity (Usg) and urine osmolality (Uosm) data from 15,055 U.S. nonpregnant adults without kidney failure aged 18-80 in 2007-2012 participating in the National Health and Nutrition Examination Survey (NHANES). We tested the relationship of age on urine concentration biomarkers with multiple linear regressions using survey commands. We compared results to longitudinal data on Usg from 116 Tsimane' forager-horticulturalists (266 observations) adults aged 18-83 in 2013-2014 from Lowland Bolivia, and to 38 Hadza hunter-gatherers (156 observations) aged 18-75 in 2010-2015 from Tanzania using random-effects panel linear regressions. RESULTS: Among U.S. adults, age was significantly negatively associated with Usg (Adjusted beta [B] = -0.0009 g/mL/10 years; SE = 0.0001; p < 0.001) and Uosm (B = -28.1 mOsm/kg/10 yr; SE = 2.4; p < 0.001). In contrast, among Tsimane' (B = 0.0003 g/mL/10 yr; SE = 0.0002; p = 0.16) and Hadza (B = -0.0004 g/mL/10 yr; SE = 0.0004; p = 0.29) age was not associated with Usg. Older Tsimane' and Hadza exhibited similar within-individual variability in Usg equivalent to younger adults. DISCUSSION: While U.S. adults exhibited age-related declines in urine concentration, Tsimane' and Hadza adults did not exhibit the same statistical decline in Usg. Mismatches between evolved physiology and modern environments in lifestyle may affect kidney physiology and disease risk.


Assuntos
Envelhecimento/fisiologia , Nefropatias , Rim/fisiologia , Urinálise/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/urina , Bolívia/epidemiologia , Feminino , Humanos , Nefropatias/epidemiologia , Nefropatias/fisiopatologia , Nefropatias/urina , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Tanzânia/epidemiologia , Estados Unidos/epidemiologia , Adulto Jovem
13.
J Am Soc Nephrol ; 29(4): 1097-1107, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29237738

RESUMO

Urinary concentrating ability is central to mammalian water balance and depends on a medullary osmotic gradient generated by a countercurrent multiplication mechanism. Medullary hyperosmolarity is protected from washout by countercurrent exchange and efficient removal of interstitial fluid resorbed from the loop of Henle and collecting ducts. In most tissues, lymphatic vessels drain excess interstitial fluid back to the venous circulation. However, the renal medulla is devoid of classic lymphatics. Studies have suggested that the fenestrated ascending vasa recta (AVRs) drain the interstitial fluid in this location, but this function has not been conclusively shown. We report that late gestational deletion of the angiopoietin receptor endothelial tyrosine kinase 2 (Tie2) or both angiopoietin-1 and angiopoietin-2 prevents AVR formation in mice. The absence of AVR associated with rapid accumulation of fluid and cysts in the medullary interstitium, loss of medullary vascular bundles, and decreased urine concentrating ability. In transgenic reporter mice with normal angiopoietin-Tie2 signaling, medullary AVR exhibited an unusual hybrid endothelial phenotype, expressing lymphatic markers (prospero homeobox protein 1 and vascular endothelial growth factor receptor 3) as well as blood endothelial markers (CD34, endomucin, platelet endothelial cell adhesion molecule 1, and plasmalemmal vesicle-associated protein). Taken together, our data redefine the AVRs as Tie2 signaling-dependent specialized hybrid vessels and provide genetic evidence of the critical role of AVR in the countercurrent exchange mechanism and the structural integrity of the renal medulla.


Assuntos
Angiopoietina-1/fisiologia , Angiopoietina-2/fisiologia , Líquido Extracelular/metabolismo , Capacidade de Concentração Renal/fisiologia , Medula Renal/irrigação sanguínea , Receptor TIE-2/fisiologia , Angiopoietina-1/deficiência , Angiopoietina-1/genética , Angiopoietina-2/deficiência , Angiopoietina-2/genética , Animais , Padronização Corporal , Linhagem da Célula , Endotélio Vascular , Genes Reporter , Idade Gestacional , Proteínas de Homeodomínio/análise , Doenças Renais Císticas/genética , Medula Renal/embriologia , Medula Renal/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miofibroblastos/patologia , Osmose , Receptor TIE-2/deficiência , Receptor TIE-2/genética , Circulação Renal , Transdução de Sinais , Proteínas Supressoras de Tumor/análise , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/análise
14.
J Am Soc Nephrol ; 29(3): 857-868, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29237740

RESUMO

Collecting ducts make up the distal-most tubular segments of the kidney, extending from the cortex, where they connect to the nephron proper, into the medulla, where they release urine into the renal pelvis. During water deprivation, body water preservation is ensured by the selective transepithelial reabsorption of water into the hypertonic medullary interstitium mediated by collecting ducts. The collecting duct epithelium forms tight junctions composed of barrier-enforcing claudins and exhibits a higher transepithelial resistance than other segments of the renal tubule exhibit. However, the functional relevance of this strong collecting duct epithelial barrier is unresolved. Here, we report that collecting duct-specific deletion of an epithelial transcription factor, grainyhead-like 2 (GRHL2), in mice led to reduced expression of tight junction-associated barrier components, reduced collecting duct transepithelial resistance, and defective renal medullary accumulation of sodium and other osmolytes. In vitro, Grhl2-deficient collecting duct cells displayed increased paracellular flux of sodium, chloride, and urea. Consistent with these effects, Grhl2-deficient mice had diabetes insipidus, produced dilute urine, and failed to adequately concentrate their urine after water restriction, resulting in susceptibility to prerenal azotemia. These data indicate a direct functional link between collecting duct epithelial barrier characteristics, which appear to prevent leakage of interstitial osmolytes into urine, and body water homeostasis.


Assuntos
Epitélio/fisiologia , Túbulos Renais Coletores/fisiologia , Osmorregulação/genética , Junções Íntimas/genética , Junções Íntimas/fisiologia , Fatores de Transcrição/genética , Animais , Aquaporina 2/metabolismo , Aquaporina 4/metabolismo , Arginina Vasopressina/metabolismo , Azotemia/etiologia , Transporte Biológico/genética , Creatinina/urina , Perfilação da Expressão Gênica , Masculino , Camundongos , Concentração Osmolar , Transdução de Sinais , Ureia/metabolismo , Urina , Água/metabolismo , Privação de Água/fisiologia
15.
Annu Rev Physiol ; 76: 387-409, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24245944

RESUMO

The renal medulla produces concentrated urine through the generation of an osmotic gradient that progressively increases from the cortico-medullary boundary to the inner medullary tip. In the outer medulla, the osmolality gradient arises principally from vigorous active transport of NaCl, without accompanying water, from the thick ascending limbs of short- and long-looped nephrons. In the inner medulla, the source of the osmotic gradient has not been identified. Recently, there have been important advances in our understanding of key components of the urine-concentrating mechanism, including (a) better understanding of the regulation of water, urea, and sodium transport proteins; (b) better resolution of the anatomical relationships in the medulla; and (c) improvements in mathematical modeling of the urine-concentrating mechanism. Continued experimental investigation of signaling pathways regulating transepithelial transport, both in normal animals and in knockout mice, and incorporation of the resulting information into mathematical simulations may help to more fully elucidate the mechanism for concentrating urine in the inner medulla.


Assuntos
Capacidade de Concentração Renal/fisiologia , Rim/fisiologia , Animais , Humanos , Medula Renal/anatomia & histologia , Medula Renal/metabolismo , Túbulos Renais Coletores/metabolismo , Camundongos
16.
J Am Soc Nephrol ; 27(5): 1448-55, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26407594

RESUMO

Urea has a critical role in urinary concentration. Mice lacking the inner medullary collecting duct (IMCD) urea transporter A1 (UT-A1) and urea transporter A3 (UT-A3) have very low levels of urea permeability and are unable to concentrate urine. To investigate the role of UT-A1 in the concentration of urine, we transgenically expressed UT-A1 in knockout mice lacking UT-A1 and UT-A3 using a construct with a UT-A1 gene that cannot be spliced to produce UT-A3. This construct was inserted behind the original UT-A promoter to yield a mouse expressing only UT-A1 (UT-A1(+/+)/UT-A3(-/-)). Western blot analysis demonstrated UT-A1 in the inner medulla of UT-A1(+/+)/UT-A3(-/-) and wild-type mice, but not in UT-A1/UT-A3 knockout mice, and an absence of UT-A3 in UT-A1(+/+)/UT-A3(-/-) and UT-A1/UT-A3 knockout mice. Immunohistochemistry in UT-A1(+/+)/UT-A3(-/-) mice also showed negative UT-A3 staining in kidney and other tissues and positive UT-A1 staining only in the IMCD. Urea permeability in isolated perfused IMCDs showed basal permeability in the UT-A1(+/+)/UT-A3(-/-) mice was similar to levels in wild-type mice, but vasopressin stimulation of urea permeability in wild-type mice was significantly greater (100% increase) than in UT-A1(+/+)/UT-A3(-/-) mice (8% increase). Notably, basal urine osmolalities in both wild-type and UT-A1(+/+)/UT-A3(-/-) mice increased upon overnight water restriction. We conclude that transgenic expression of UT-A1 restores basal urea permeability to the level in wild-type mice but does not restore vasopressin-stimulated levels of urea permeability. This information suggests that transgenic expression of UT-A1 alone in mice lacking UT-A1 and UT-A3 is sufficient to restore urine-concentrating ability.


Assuntos
Proteínas de Membrana Transportadoras/genética , Ureia/urina , Animais , Proteínas de Membrana Transportadoras/fisiologia , Camundongos , Camundongos Knockout , Fenômenos Fisiológicos do Sistema Urinário , Transportadores de Ureia
17.
Pflugers Arch ; 468(7): 1161-1170, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26972907

RESUMO

Two urea transporters, UT-A1 and UT-A3, are expressed in the kidney terminal inner medullary collecting duct (IMCD) and are important for the production of concentrated urine. UT-A1, as the largest isoform of all UT-A urea transporters, has gained much attention and been extensively studied; however, the role and the regulation of UT-A3 are less explored. In this study, we investigated UT-A3 regulation by glycosylation modification. A site-directed mutagenesis verified a single glycosylation site in UT-A3 at Asn279. Loss of the glycosylation reduced forskolin-stimulated UT-A3 cell membrane expression and urea transport activity. UT-A3 has two glycosylation forms, 45 and 65 kDa. Using sugar-specific binding lectins, the UT-A3 glycosylation profile was examined. The 45-kDa form was pulled down by lectin concanavalin A (Con A) and Galant husnivalis lectin (GNL), indicating an immature glycan with a high amount of mannose (Man), whereas the 65-kDa form is a mature glycan composed of acetylglucosamine (GlcNAc) and poly-N-acetyllactosame (poly-LacNAc) that was pulled down by wheat germ agglutinin (WGA) and tomato lectin, respectively. Interestingly, the mature form of UT-A3 glycan contains significant amounts of sialic acid. We explored the enzymes responsible for directing UT-A3 sialylation. Sialyltransferase ST6GalI, but not ST3GalIV, catabolizes UT-A3 α2,6-sialylation. Activation of protein kinase C (PKC) by PDB treatment promoted UT-A3 glycan sialylation and membrane surface expression. The PKC inhibitor chelerythrine blocks ST6GalI-induced UT-A3 sialylation. Increased sialylation by ST6GalI increased UT-A3 protein stability and urea transport activity. Collectively, our study reveals a novel mechanism of UT-A3 regulation by ST6GalI-mediated sialylation modification that may play an important role in kidney urea reabsorption and the urinary concentrating mechanism.


Assuntos
Medula Renal/metabolismo , Túbulos Renais Coletores/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ureia/metabolismo , Transporte Biológico/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Glicosilação , Células HEK293 , Humanos , Polissacarídeos/metabolismo , Proteína Quinase C/metabolismo , Transportadores de Ureia
18.
Am J Physiol Renal Physiol ; 311(6): F1149-F1152, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27534996

RESUMO

Fundamental kidney physiology research can provide important insight into how the kidney works and suggest novel therapeutic opportunities to treat human diseases. This is especially true for nephrogenic diabetes insipidus (NDI). Over the past decade, studies elucidating the molecular physiology and signaling pathways regulating water transport have suggested novel therapeutic possibilities. In patients with congenital NDI due to mutations in the type 2 vasopressin receptor (V2R) or acquired NDI due to lithium (or other medications), there are no functional abnormalities in the aquaporin-2 (AQP2) water channel, or in another key inner medullary transport protein, the UT-A1 urea transporter. If it is possible to phosphorylate and/or increase the apical membrane accumulation of these proteins, independent of vasopressin or cAMP, one may be able to treat NDI. Sildenifil (through cGMP), erlotinib, and simvastatin each stimulate AQP2 insertion into the apical plasma membrane. Some recent human data suggest that sildenafil and simvastatin may improve urine concentrating ability. ONO-AE1-329 (ONO) stimulates the EP4 prostanoid receptor (EP4), which stimulates kinases that in turn phosphorylate AQP2 and UT-A1. Clopidogrel is a P2Y12-R antagonist that potentiates the effect of vasopressin and increases AQP2 abundance. Metformin stimulates AMPK to phosphorylate and activate AQP2 and UT-A1, and it increases urine concentrating ability in two rodent models of NDI. Since metformin, sildenafil, and simvastatin are commercially available and have excellent safety records, the potential for rapidly advancing them into clinical trials is high.


Assuntos
Adenilato Quinase/metabolismo , Aquaporina 2/metabolismo , Diabetes Insípido Nefrogênico/tratamento farmacológico , Receptores de Vasopressinas/genética , Animais , Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/metabolismo , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Mutação , Fosforilação/efeitos dos fármacos , Receptores de Vasopressinas/metabolismo , Citrato de Sildenafila/farmacologia , Citrato de Sildenafila/uso terapêutico , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico
19.
Am J Physiol Renal Physiol ; 311(6): F1189-F1197, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27488997

RESUMO

Vasopressin triggers the phosphorylation and apical plasma membrane accumulation of aquaporin 2 (AQP2), and it plays an essential role in urine concentration. Vasopressin, acting through protein kinase A, phosphorylates AQP2. However, the phosphorylation state of AQP2 could also be affected by the action of protein phosphatases (PPs). Rat inner medullas (IM) were incubated with calyculin (PP1 and PP2A inhibitor, 50 nM) or tacrolimus (PP2B inhibitor, 100 nM). Calyculin did not affect total AQP2 protein abundance (by Western blot) but did significantly increase the abundances of pS256-AQP2 and pS264-AQP2. It did not change pS261-AQP2 or pS269-AQP2. Calyculin significantly enhanced the membrane accumulation (by biotinylation) of total AQP2, pS256-AQP2, and pS264-AQP2. Likewise, immunohistochemistry showed an increase in the apical plasma membrane association of pS256-AQP2 and pS264-AQP2 in calyculin-treated rat IM. Tacrolimus also did not change total AQP2 abundance but significantly increased the abundances of pS261-AQP2 and pS264-AQP2. In contrast to calyculin, tacrolimus did not change the amount of total AQP2 in the plasma membrane (by biotinylation and immunohistochemistry). Tacrolimus did increase the expression of pS264-AQP2 in the apical plasma membrane (by immunohistochemistry). In conclusion, PP1/PP2A regulates the phosphorylation and apical plasma membrane accumulation of AQP2 differently than PP2B. Serine-264 of AQP2 is a phosphorylation site that is regulated by both PP1/PP2A and PP2B. This dual regulatory pathway may suggest a previously unappreciated role for multiple phosphatases in the regulation of urine concentration.


Assuntos
Aquaporina 2/metabolismo , Membrana Celular/efeitos dos fármacos , Medula Renal/efeitos dos fármacos , Oxazóis/farmacologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Tacrolimo/farmacologia , Animais , Membrana Celular/metabolismo , Inibidores Enzimáticos/farmacologia , Medula Renal/metabolismo , Toxinas Marinhas , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
20.
Am J Physiol Renal Physiol ; 310(10): F1008-12, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26962099

RESUMO

Nephrogenic diabetes insipidus (NDI) is characterized by production of very large quantities of dilute urine due to an inability of the kidney to respond to vasopressin. Congenital NDI results from mutations in the type 2 vasopressin receptor (V2R) in ∼90% of families. These patients do not have mutations in aquaporin-2 (AQP2) or urea transporter UT-A1 (UT-A1). We tested adenosine monophosphate kinase (AMPK) since it is known to phosphorylate another vasopressin-sensitive transporter, NKCC2 (Na-K-2Cl cotransporter). We found AMPK expressed in rat inner medulla (IM). AMPK directly phosphorylated AQP2 and UT-A1 in vitro. Metformin, an AMPK activator, increased phosphorylation of both AQP2 and UT-A1 in rat inner medullary collecting ducts (IMCDs). Metformin increased the apical plasma membrane accumulation of AQP2, but not UT-A1, in rat IM. Metformin increased both osmotic water permeability and urea permeability in perfused rat terminal IMCDs. These findings suggest that metformin increases osmotic water permeability by increasing AQP2 accumulation in the apical plasma membrane but increases urea permeability by activating UT-A1 already present in the membrane. Lastly, metformin increased urine osmolality in mice lacking a V2R, a mouse model of congenital NDI. We conclude that AMPK activation by metformin mimics many of the mechanisms by which vasopressin increases urine-concentrating ability. These findings suggest that metformin may be a novel therapeutic option for congenital NDI due to V2R mutations.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aquaporina 2/metabolismo , Diabetes Insípido Nefrogênico/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Proteínas de Membrana Transportadoras/metabolismo , Metformina/uso terapêutico , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Animais , Diabetes Insípido Nefrogênico/urina , Avaliação Pré-Clínica de Medicamentos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Ureia/metabolismo , Água/metabolismo , Transportadores de Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA