Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 199, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026314

RESUMO

BACKGROUND: The demand for bioplastics has increased exponentially as they have emerged as alternatives to petrochemical plastics. However, there is a substantial lack of knowledge regarding bioplastic degradation. This study developed a novel pretreatment method to improve the accessibility of a bioplastic substrate for biodegradation. In this study, cellulose acetate, a bioplastic found in the world's most littered waste, e.g. cigarette filters, was selected as a potential substrate. Before anaerobic digestion, three thermal alkaline pretreatments: TA 30 °C, TA 90 °C, and TA 121 °C, were used to evaluate their effects on the chemical alterations of cellulose acetate. RESULT: The ester groups in cellulose acetate were significantly reduced by the TA 30 °C pretreatment, as seen by a decrease in C = O stretching vibrations and shortening of C - O stretches (1,270 ∼ 1,210 cm- 1), indicating effective removal of acetyl groups. This pretreatment significantly enhanced cellulose acetate biodegradability to a maximum of 91%, surpassing the previously reported cellulose acetate degradation. Methane production increased to 695.0 ± 4 mL/g of volatile solid after TA 30 °C pretreatment, indicating enhanced cellulose acetate accessibility to microorganisms, which resulted in superior biogas production compared to the control (306.0 ± 10 mL/g of volatile solid). Diverse microbes in the anaerobic digestion system included hydrolytic (AB240379_g, Acetomicrobium, FN436103_g, etc.), fermentative, and volatile fatty acids degrading bacteria (JF417922_g, AB274492_g, Coprothermobacter, etc.), with Methanobacterium and Methanothermobacter being the sole hydrogenotrophic methanogens in the anaerobic digestion system. Additionally, an attempt to predict the pathway for the effective degradation of cellulose acetate from the microbial community in different pretreatment conditions. CONCLUSIONS: To the best of our knowledge, this is the first study to estimate the maximum cellulose acetate degradation rate, with a simple and cost-effective pretreatment procedure. This approach holds promise for mitigating the environmental impact of cellulose acetate of cigarette filters and presents a sustainable and economically viable waste management strategy.


Assuntos
Biodegradação Ambiental , Celulose , Celulose/metabolismo , Celulose/análogos & derivados , Metano/metabolismo , Anaerobiose , Biocombustíveis , Produtos do Tabaco , Bactérias/metabolismo , Temperatura , Filtração
2.
Phytochem Rev ; : 1-28, 2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35095355

RESUMO

In the current global scenario, the world is under a serious dilemma due to the increasing human population, industrialization, and urbanization. The ever-increasing need for fuels and increasing nutritional problems have made a serious concern on the demand for nutrients and renewable and eco-friendly fuel sources. Currently, the use of fossil fuels is creating ecological and economic problems. Microalgae have been considered as a promising candidate for high-value metabolites and alternative renewable energy sources. Microalgae offer several advantages such as rapid growth rate, efficient land utilization, carbon dioxide sequestration, ability to cultivate in wastewater, and most importantly, they do not participate in the food crop versus energy crop dilemma or debate. An efficient microalgal biorefinery system for the production of lipids and subsequent byproduct for nutraceutical applications could well satisfy the need. But, the current microalgal cultivation systems for the production of lipids and nutraceuticals do not offer techno-economic feasibility together with energy and environmental sustainability. This review article has its main focus on the production of lipids and nutraceuticals from microalgae, covering the current strategies used for lipid production and the major high-value metabolites from microalgae and their nutraceutical importance. This review also provides insights on the future strategies for enhanced microalgal lipid production and subsequent utilization of microalgal biomass.

3.
Int J Syst Evol Microbiol ; 67(7): 2114-2120, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28742009

RESUMO

Strain MHT, a strictly anaerobic, Gram-stain-negative, non-spore-forming, spherical coccus or coccoid-shaped microorganism, was isolated from a cow rumen during a screen for hexanoic acid-producing bacteria. The microorganism grew at 30-40 °C and pH 5.5-7.5 and exhibited production of various short- and medium-chain carboxylic acids (acetic acid, butyric acid, pentanoic acid, isobutyric acid, isovaleric acid, hexanoic acid, heptanoic acid and octanoic acid), as well as H2 and CO2 as biogas. Phylogenetic analysis based on 16S rRNA gene sequencing demonstrated that MHT represents a member of the genus Megasphaera, with the closest relatives being Megapsphaera indica NMBHI-10T (94.1 % 16S rRNA sequence similarity), Megasphaera elsdenii DSM 20460T (93.8 %) and Megasphaera paucivorans DSM 16981T (93.8 %). The major cellular fatty acids produced by MHT included C12 : 0, C16 : 0, C18 : 1cis 9, and C18 : 0, and the DNA G+C content of the MHT genome is 51.8 mol%. Together, the distinctive phenotypic and phylogenetic characteristics of MHT indicate that this microorganism represents a novel species of the genus Megasphaera, for which the name Megasphaera hexanoica sp. nov. is herein proposed. The type strain of this species is MHT (=KCCM 43214T=JCM 31403T).


Assuntos
Ácidos Carboxílicos/metabolismo , Bovinos/microbiologia , Megasphaera/classificação , Filogenia , Rúmen/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Feminino , Megasphaera/genética , Megasphaera/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Small ; 11(16): 1905-11, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25580907

RESUMO

Ag nanowire (NW) mesh is used as transparent conducting electrode for high efficient flexible organic solar cells (OSCs). The Ag NW mesh electrode facilitates light scattering and trapping, allowing enhancement of light absorption in the active layer. OSCs incorporating Ag NW mesh electrode exhibit maximum power conversion efficiency (PCE) of 4.47%, 25%, higher than that of OSCs with a conventional ITO electrode (3.63%).

5.
Int J Syst Evol Microbiol ; 65(12): 4902-4908, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26474980

RESUMO

A strictly anaerobic, Gram-stain-positive, non-spore-forming, rod-shaped bacterial strain, designated BS-1T, was isolated from an anaerobic digestion reactor during a study of bacteria utilizing galactitol as the carbon source. Its cells were 0.3-0.5 µm × 2-4 µm, and they grew at 35-45 °C and at pH 6.0-8.0. Strain BS-1T produced H2, CO2, ethanol, acetic acid, butyric acid and caproic acid as metabolic end products of anaerobic fermentation. Phylogenetic analysis, based on the 16S rRNA gene sequence, showed that strain BS-1T represented a novel bacterial genus within the family Ruminococcaceae, Clostridium Cluster IV. The type strains that were most closely related to strain BS-1T were Clostridium sporosphaeroides KCTC 5598T (94.5 %), Clostridium leptum KCTC 5155T (94.3 %), Ruminococcus bromii ATCC 27255T (92.1 %) and Ethanoligenens harbinense YUAN-3T (91.9 %). Strain BS-1T had 17.6 % and 20.9 % DNA-DNA relatedness values with C. sporosphaeroides DSM 1294T and C. leptum DSM 753T, respectively. The major components of the cellular fatty acids were C16 : 0 dimethyl aldehyde (DMA) (22.1 %), C16 : 0 aldehyde (14.1 %) and summed feature 11 (iso-C17 : 0 3-OH and/or C18 : 2 DMA; 10.0 %). The genomic DNA G+C content was 50.0 mol%. Phenotypic and phylogenetic characteristics allowed strain BS-1T to be clearly distinguished from other taxa of the genus Clostridium Cluster IV. On the basis of these data, the isolate is considered to represent a novel genus and novel species within Clostridium Cluster IV, for which the name Caproiciproducens galactitolivorans gen. nov., sp. nov. is proposed. The type species is BS-1T ( = JCM 30532T and KCCM 43048T).


Assuntos
Caproatos/metabolismo , Clostridiales/classificação , Galactitol/metabolismo , Filogenia , Águas Residuárias/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridiales/genética , Clostridiales/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Biotechnol Lett ; 37(9): 1837-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26026964

RESUMO

OBJECTIVE: To produce butyric acid from red algae such as Gelidium amansii in which galactose is a main carbohydrate, microorganisms utilizing galactose and tolerating inhibitors in hydrolysis including levulinic acid and 5-hydroxymethylfurfural (HMF) are required. RESULTS: A newly isolated bacterium, Clostridium sp. S1 produced butyric acid not only from galactose as the sole carbon source but also from a mixture of galactose and glucose through simultaneous utilization. Notably, Clostridium sp. S1 produced butyric acid and a small amount of acetic acid with the butyrate:acetate ratio of 45.4:1 and it even converted acetate to butyric acid. Clostridium sp. S1 tolerated 0.5-2 g levulinic acid/l and recovered from HMF inhibition at 0.6-2.5 g/l, resulting in 85-92% butyric acid concentration of the control culture. When acid-pretreated G. amansii hydrolysate was used, Clostridium sp. S1 produced 4.83 g butyric acid/l from 10 g galactose/l and 1 g glucose/l. CONCLUSION: Clostridium sp. S1 produces butyric acid from red algae due to its characteristics in sugar utilization and tolerance to inhibitors, demonstrating its advantage as a red algae-utilizing microorganism.


Assuntos
Ácido Butírico/metabolismo , Clostridium/isolamento & purificação , Rodófitas/química , Clostridium/genética , Clostridium/metabolismo , Galactose/metabolismo , Glucose/metabolismo , Ácidos Levulínicos/farmacologia , Filogenia , Extratos Vegetais/química
7.
Bioprocess Biosyst Eng ; 38(11): 2147-54, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26280214

RESUMO

Shewanella oneidensis MR-1 is one of the most well-known metal-reducing bacteria and it has been extensively studied for microbial fuel cell and bioremediation aspects. In this study, we have examined S. oneidensis MR-1 as an isobutanol-producing host by assessing three key factors such as isobutanol synthetic genes, carbon sources, and electron supply systems. Heterologous Ehrlich pathway genes, kivD encoding ketoisovalerate decarboxylase and adh encoding alcohol dehydrogenase, were constructed in S. oneidensis MR-1. Among the composition of carbon sources examined, 2% of N-acetylglucosamine, 1.5% of pyruvate and 2% of lactate were found to be the most optimal nutrients and resulted in 10.3 mg/L of isobutanol production with 48 h of microaerobic incubation. Finally, the effects of metal ions (electron acceptor) and direct electron transfer systems on isobutanol production were investigated, and Fe(2+) ions increased the isobutanol production up to 35%. Interestingly, deletion of mtrA and mtrB, genes responsible for membrane transport systems, did not have significant impact on isobutanol production. Finally, we applied engineered S. oneidensis to a bioelectrical reactor system to investigate the effect of a direct electron supply system on isobutanol production, and it resulted in an increased growth and isobutanol production (up to 19.3 mg/L). This report showed the feasibility of S. oneidensis MR-1 as a genetic host to produce valuable biochemicals and combine an electron-supplying system with biotechnological applications.


Assuntos
Butanóis/metabolismo , Engenharia Metabólica/métodos , Shewanella/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Shewanella/genética
8.
Opt Express ; 22(22): 26891-9, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25401837

RESUMO

Silver (Ag) grid transparent electrode is one of the most promising transparent conducting electrodes (TCEs) to replace conventional indium tin oxide (ITO). We systematically investigate an effect of geometric lattice modifications on optical and electrical properties of Ag grid electrode. The reference Ag grid with 5 µm width and 100 µm pitch (duty of 0.05) prepared by conventional photo-lithography and lift-off processes shows the sheet resistance of 13.27 Ω/sq, transmittance of 81.1%, and resultant figure of merit (FOM) of 129.05. Three different modified Ag grid electrodes with stripe added-mesh (SAM), triangle-added mesh (TAM), and diagonal-added mesh (DAM) are suggested to improve optical and electrical properties. Although all three of SAM, TAM, and DAM Ag grid electrodes exhibit the lower transmittance values of about 72 - 77%, they showed much decreased sheet resistance of 6 - 8 Ω/sq. As a result, all of the lattice-modified Ag grid electrodes display significant improvement of FOM and the highest value of 171.14 is obtained from DAM Ag grid, which is comparable to that of conventional ITO electrode (175.46). Also, the feasibility of DAM Ag gird electrode for use in organic solar cell is confirmed by finite difference time domain (FDTD) simulations. Unlike a conventional ITO electrode, DAM Ag grid electrode can induce light scattering and trapping due to the diffuse transmission that compensates for the loss in optical transparency, resulting in comparable light absorption in the photo active layer of poly(3-hexylthiophene) (P3HT): [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM). P3HT:PC60BM based OSCs with the DAM Ag grid electrode were fabricated, which also showed the potential for ITO-free transparent electrode.

9.
Antonie Van Leeuwenhoek ; 106(3): 577-83, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25063360

RESUMO

A Gram-stain positive, strict anaerobe, spore-forming, motile rod-shaped bacterial strain with peritrichous flagella, designated YMB-57(T), was isolated from the intestine of a cinereous vulture (Aegypius monachus) in Korea. Strain YMB-57(T) was found to show optimal growth at 37 °C, pH 7.5 and 1.0 % (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain YMB-57(T) belongs to the genus Clostridium and is most closely related to the type strains of Clostridium subterminale (96.9 % sequence similarity), Clostridium thiosulfatireducens (96.7 %) and Clostridium sulfidigenes (96.6 %). The main fermentation end-products identified following growth in PYG medium were acetate, butyrate, ethanol, propanol, carbon dioxide and hydrogen. Peptone was converted to ethanol, and butanol, whereas glucose was fermented to ethanol. The major cellular fatty acids were identified as C16:0, C18:1 ω9c, and C18:1 ω9c DMA and the DNA G+C content was determined to be 34.0 mol%. Phenotypic and phylogenetic differences indicate that strain YMB-57(T) is distinct from other Clostridium species. It is proposed that strain YMB-57(T) be classified as the type strain of a novel species of the genus Clostridium, with the name Clostridium vulturis sp. nov. The type strain is YMB-57(T) (=KCTC 15114(T) = JCM 17998(T)).


Assuntos
Clostridium/classificação , Clostridium/isolamento & purificação , Falconiformes/microbiologia , Anaerobiose , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridium/genética , Clostridium/fisiologia , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Concentração de Íons de Hidrogênio , Intestinos/microbiologia , Coreia (Geográfico) , Locomoção , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Esporos Bacterianos/citologia , Temperatura
10.
Microbiol Resour Announc ; 13(1): e0064223, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38054708

RESUMO

Here, we report the complete genome sequence of the thermophilic hydrogenotrophic methanogen Methanothermobacter sp. DP isolated in South Korea from an anaerobic digester fed with cigarette waste. The genome consists of 1,693,285 bp, with 1,772 protein-coding genes and a GC content of 48.8%.

11.
Appl Microbiol Biotechnol ; 97(12): 5627-34, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23624707

RESUMO

In this study, a novel system for synthesis of 2-butanone from levulinic acid (γ-keto-acid) via an enzymatic reaction was developed. Acetoacetate decarboxylase (AADC; E.C. 4.1.1.4) from Clostridium acetobutylicum was selected as a biocatalyst for decarboxylation of levulinic acid. The purified recombinant AADC from Escherichia coli successfully converted levulinic acid to 2-butanone with a conversion yield of 8.4-90.3 % depending on the amount of AADC under optimum conditions (30 °C and pH 5.0) despite that acetoacetate, a ß-keto-acid, is a natural substrate of AADC. In order to improve the catalytic efficiency, an AADC-mediator system was tested using methyl viologen, methylene blue, azure B, zinc ion, and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as mediators. Among them, methyl viologen showed the best performance, increasing the conversion yield up to 6.7-fold in comparison to that without methyl viologen. The results in this study are significant in the development of a renewable method for the synthesis of 2-butanone from biomass-derived chemical, levulinic acid, through enzymatic decarboxylation.


Assuntos
Butanonas/metabolismo , Carboxiliases/metabolismo , Clostridium acetobutylicum/enzimologia , Ácidos Levulínicos/metabolismo , Carboxiliases/genética , Carboxiliases/isolamento & purificação , Ativadores de Enzimas/metabolismo , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Temperatura
12.
Curr Microbiol ; 66(6): 555-65, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23358667

RESUMO

A(2)O process is a sequential wastewater treatment process that uses anaerobic, anoxic, and oxic chambers for nitrogen and phosphorus removal. In this study, the bacterial communities among these chambers were compared, and the diversity of the bacteria involved in nitrogen and phosphorus removal was surveyed. A pilot-scale A(2)O process (50 m(3) day(-1)) was operated for more than 6 months, and bacterial 16S rRNA gene diversity was analyzed using pyrosequencing. A total of 7,447 bacterial sequence reads were obtained from anaerobic (1,546), anoxic (2,158), and oxic (3,743) chambers. Even though there were differences in the atmospheric condition and functionality, no prominent differences could be found in the bacterial community of the three chambers of the pilot A(2)O process. All sequence reads, which were taxonomically analyzed using the Eztaxon-e database, were assigned into 638 approved or tentative genera. Among them, about 72.2 % of the taxa were contained in the phyla Proteobacteria and Bacteroidetes. Phosphate-accumulating bacteria, Candidatus Accumulibacter phosphatis, and two other Accumulibacter were found to constitute 3.1 % of the identified genera. Ammonia-oxidizing bacteria, Nitrosomonas oligotropha, and four other phylotypes in the same family, Nitrosomonadaceae, constituted 0.2 and 0.9 %, respectively. Nitrite-oxidizing bacteria, Nitrospira defluvii, and other three phylotypes in the same family, Nitrospiraceae, constituted 2.5 and 0.1 %, respectively. In addition, Dokdonella and a phylotype of the phylum Chloroflexi, function in nitrogen and/or phosphate removal of which have not been reported in the A(2)O process, constituted the first and third composition among genera at 4.3 and 3.8 %, respectively.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Eliminação de Resíduos Líquidos , Águas Residuárias/microbiologia , Anaerobiose , Bactérias/classificação , Técnicas de Tipagem Bacteriana , Sequência de Bases , Reatores Biológicos , DNA Bacteriano , Consórcios Microbianos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
Biotechnol Bioeng ; 109(10): 2494-502, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22511218

RESUMO

Electron mediators and electron supply through a cathode were examined to enhance the reducing power for butyrate production by an acidogenic clostridium strain, Clostridium tyrobutyricum BAS 7. Among the tested electron mediators, methyl viologen (MV)-amended cultures showed an increase of butyrate productivity (1.3 times), final concentration (1.4 times), and yield (1.3 times). The electron flow altered by MV addition from the ferredoxin pool to the NADH pool was shown by one electron model, implying that more available NADH increased butyrate production. In the cathode compartment poised at -400 mV versus the Ag/AgCl electrode, the neutral red (NR)-amended cultures of Clostridium tyrobutyricum BAS 7 increased butyrate concentration (from 5 to 8.8 g/L) and yield (from 0.33 up to 0.44 g/g) with no acetate production at all. Given that electrically reduced NR (NR(red) , yellow) by the cathode was re-oxidized (NR(ox) , red) in the cells on the basis of color change, electron flow from NR(red) to NAD(+) (i.e., NADH generation) induced an increase in butyrate production. This is the first report to show the increase of butyric acid production by electrically driven acidogenesis. These results show that the electron flow altered NADH formation by electron mediators and by the cathodic electron donor, increasing the yield and selectivity of reduced end-products like butyrate.


Assuntos
Butiratos/metabolismo , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Eletrodos/microbiologia , Ácidos/metabolismo , Vermelho Neutro/metabolismo , Oxirredução , Paraquat/metabolismo
14.
ScientificWorldJournal ; 2012: 471417, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22593687

RESUMO

In this paper, the different applications of butyric acid and its current and future production status are highlighted, with a particular emphasis on the biofuels industry. As such, this paper discusses different issues regarding butyric acid fermentations and provides suggestions for future improvements and their approaches.


Assuntos
Bactérias/metabolismo , Biocombustíveis , Ácido Butírico/metabolismo , Fermentação , Glucose/metabolismo , Ácido Acético/metabolismo , Bactérias/crescimento & desenvolvimento , Indústria Química/métodos , Indústria Química/tendências , Clostridium butyricum/crescimento & desenvolvimento , Clostridium butyricum/metabolismo , Microbiologia Industrial/métodos , Microbiologia Industrial/tendências , Cinética
15.
Bioresour Technol ; 344(Pt A): 126211, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34710599

RESUMO

Medium-chain carboxylic acid (MCCA) production from organic wastes has attracted much attention because of their higher energy contents and diverse applications. Anaerobic reactor microbiomes are stable and resilient and have resulted in efficient performance during many years of operation for thousands of full-scale anaerobic digesters worldwide. The method underlying how the relevant microbial pathways contribute to elongate carbon chains in reactor microbiomes is important. In particular, the reverse ß-oxidation pathway genes are critical to upgrading short-chain fermentation products to MCCAs via a chain elongation (CE) process. Diverse genomics and metagenomics studies have been conducted in various fields, ranging from intracellular metabolic pathways to metabolic cascades between different strains. This review covers taxonomic approach to culture processes depending on types of organic wastes and the deeper understanding of genome and metagenome-scale CE pathway construction, and the co-culture and multi-omics technology that should be addressed in future research.


Assuntos
Reatores Biológicos , Microbiota , Anaerobiose , Ácidos Carboxílicos , Fermentação
16.
ACS Appl Mater Interfaces ; 14(26): 30056-30066, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737510

RESUMO

Ionogels are emerging materials for advanced electrochemical devices; however, their mechanical instability to external stresses has raised concerns about their safety. This study reports aligned bacterial nanocellulose (BC) ionogel films swelled with the model ionic liquid (IL) of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) for an unprecedented combination of high stiffness and high energy dissipation without significant loss of ionic conductivity. The aligned BC ionogel films are prepared through wet-state stretching methods, followed by drying and swelling by ILs. The aligned ionogel films exhibit significantly improved dynamic mechanical properties, overcoming the mechanical conventional limit of traditional materials by 2.0 times at 25 °C and by a maximum of 4.0 times at 0 °C. Additionally, the same samples exhibit relatively high ionic conductivities of 0.16 mS cm-1 at 20 °C and 0.45 mS cm-1 at 60 °C with storage moduli over 10 GPa. The synergistic effect of the mechanical reinforcements by alignment of the BC nanofibers and the plasticizing effects by ILs could be attributed to the significant enhancement of dynamic mechanical properties and the retention of ionic conductivities. These results will lead to a deeper understanding of the material design for mechanically superior ionogel systems with increasing demands for advanced electronic and electrochemical devices.

17.
Bioresour Technol ; 346: 126660, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34974100

RESUMO

Megasphaera hexnaoica is anaerobic bacteria who has well running reverse ß-oxidation pathway. In previous study, the strain showed excellent production of medium chain carboxylic acids (MCCAs) using fructose as electron donor. In this study, chain elongation process study using lactate instead of fructose was conducted in M. hexnaoica fermentation. It was found that M. hexanoica can use lactate as electron donor in chain elongation process. 8.9 g/L caproate production was achieved in fermentation using lactate as sole electron donor. Compare to fructose condition, lactate as electron donor showed more than 3 times higher specific titer and specific productivity. In addition, when fructose and lactate were used as electron donor simultaneously, further improvement of MCCAs production was observed to achieve maximum caproate productivity of 20.9 g/L/day. Utilization of lactate as electron donor in M. hexanoica showed potential opportunity in chain elongation process.


Assuntos
Caproatos , Ácido Láctico , Reatores Biológicos , Elétrons , Fermentação , Megasphaera
18.
J Hazard Mater ; 421: 126687, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34332482

RESUMO

E-wastes comprise complex combinations of potentially toxic elements that cause detrimental effects of the environmental contamination; besides their posing threat, most of the products also contain valuable and recoverable materials (Li, Au, Ag, W, Se, Te, etc.), which make them distinct from other forms of industrial wastes. Most of these value-added elements which are primarily employed in electronic goods are disposed of by incineration and land-filling. This is a serious issue besides just environmental pollution, as IUPAC recognized that such ignorance of or poor attention to e-waste recycling has put several elements in the periodic table to the list of endangered elements. Recycling these wastes utilized for electrocatalytic water splitting to produce H2. These recovered e-wastes materials are used as electrocatalysts for the water-splitting, additives to enhance reaction kinetics, and substrate electrodes as well. Recycling and recovery of value-added materials in the view of applying them to electrocatalytic water splitting with endangered elements' perspective have not been covered by any recent review so far. Hence, this review is dedicated to discussing the opportunities available with recycling e-wastes, types of value-added materials that can be recovered for water splitting, strategies exploited, and prospects are discussed in details.


Assuntos
Resíduo Eletrônico , Resíduo Eletrônico/análise , Incineração , Resíduos Industriais , Reciclagem , Água
19.
Bioresour Technol ; 344(Pt B): 126406, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826565

RESUMO

Microalgae are unicellular photosynthetic organisms capable of producing high-value metabolites like carbohydrates, lipids, proteins, polyunsaturated fatty acids, vitamins, pigments, and other high-value metabolites. Microalgal biomass gained more interest for the production of nutraceuticals, pharmaceuticals, therapeutics, food supplements, feed, biofuel, bio-fertilizers, etc. due to its high lipid and other high-value metabolite content. Microalgal biomass has the potential to convert trapped solar energy to organic materials and potential metabolites of nutraceutical and industrial interest. They have higher efficiency to fix carbon dioxide (CO2) and subsequently convert it into biomass and compounds of potential interest. However, to make microalgae a potential industrial candidate, cost-effective cultivation systems and harvesting methods for increasing biomass yield and reducing the cost of downstream processing have become extremely urgent and important. In this review, the current development in different microalgal cultivation systems and harvesting methods has been discussed.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Dióxido de Carbono , Lipídeos
20.
Bioresour Technol ; 322: 124537, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341713

RESUMO

The world of bioplastics has expanded rapidly in recent decades, and the new waste stream generated is creating major barriers to waste processing. Anaerobic co-digestion is to be considered one of the best options for the efficient processing of bioplastic waste due to its minimal space requirements, lower degrees of environmental pollution, and renewable energy generation. The higher carbon to nitrogen (C/N) ratio of bioplastics poses a challenge to anaerobic digestion, but co-digestion with lower C/N ratio biowastes can efficiently degrade bioplastics and improve biogas production in the system. In the future, the collection of organic waste in biodegradable plastic bags makes the waste management process easier for anaerobic digestion plants. The present review paper discusses current trends of bioplastic usage, degradation strategies, and the potential of anaerobic co-digestion for waste management with improved energy production in anaerobic digesters.


Assuntos
Reatores Biológicos , Gerenciamento de Resíduos , Anaerobiose , Biocombustíveis , Digestão , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA