Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Bioorg Chem ; 146: 107279, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513325

RESUMO

Targeting receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising therapeutic strategy for various neurodegenerative disorders. The development of a positron emission tomography (PET) probe for brain RIPK1 imaging could offer a valuable tool to assess therapeutic effectiveness and uncover the neuropathology associated with RIPK1. In this study, we present the development and characterization of two new PET radioligands, [11C]PB218 and [11C]PB220, which have the potential to facilitate brain RIPK1 imaging. [11C]PB218 and [11C]PB220 were successfully synthesized with a high radiochemical yield (34 % - 42 %) and molar activity (293 - 314 GBq/µmol). PET imaging characterization of two radioligands was conducted in rodents, demonstrating that both newly developed tracers have good brain penetration (maximum SUV = 0.9 - 1.0) and appropriate brain clearance kinetic profiles. Notably, [11C]PB218 has a more favorable binding specificity than [11C]PB220. A PET/MR study of [11C]PB218 in a non-human primate exhibited good brain penetration, desirable kinetic properties, and a safe profile, thus supporting the translational applicability of our new probe. These investigations enable further translational exploration of [11C]PB218 for drug discovery and PET probe development targeting RIPK1.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Animais , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Compostos Radiofarmacêuticos/química , Radioquímica , Piridinas/metabolismo
2.
BMC Pregnancy Childbirth ; 23(1): 723, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821915

RESUMO

BACKGROUND: Whether intrauterine transmission of COVID-19 occurs remains uncertain, and it remains unclear whether the disease affects fetuses. We present a case of intrauterine transmission of SARS-CoV-2 infection and the prenatal ultrasonographic findings of the fetus in a pregnant woman with mild COVID-19. CASE PRESENTATION: A 30-year-old woman was admitted to our hospital for ultrasound examination in January 2023 at 26+ 3 weeks' gestation. Twenty-one days prior, her COVID-19 nucleic acid test was positive, and she had mild symptoms, including fever (38.3 °C), headache, chills, ankle pain and cough. After receiving symptomatic treatment, she fully recovered. Prenatal ultrasound revealed that the placenta was diffusely distributed with punctate echogenic foci, hepatomegaly, and the volume of bilateral lungs decreased significantly, with enhanced echo. In addition, we found that the surface of the fetal brain demonstrated widened gyri with a flattened surface. The prenatal MRI confirmed these fetal abnormalities. Amniotic fluid was tested for SARS-CoV-2, and the sample tested was positive for the virus. After careful consideration, the pregnant woman decided to terminate the pregnancy. CONCLUSION: The intrauterine transmission of COVID-19 is certain. Moreover, the intrauterine transmission of COVID-19 may cause abnormalities in various organs of the fetus.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Feminino , Gravidez , Humanos , Adulto , SARS-CoV-2 , Gestantes , Complicações Infecciosas na Gravidez/diagnóstico , Feto , Placenta/diagnóstico por imagem , Líquido Amniótico , Transmissão Vertical de Doenças Infecciosas , Ultrassonografia Pré-Natal
3.
Plant Cell Physiol ; 62(10): 1542-1555, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34245289

RESUMO

In shoot apex cells of rice, a hexameric florigen activation complex (FAC), comprising flowering locus T (FT), 14-3-3 and the basic leucine zipper transcription factor FD, activates downstream target genes and regulates several developmental transitions, including flowering. The allotetraploid cotton (Gossypium hirsutum L.) contains only one FT locus in both of the A- and D-subgenomes. However, there is limited information regarding cotton FACs. Here, we identified a 14-3-3 protein that interacts strongly with GhFT in the cytoplasm and the nuclei, and five FD homoeologous gene pairs were characterized. In vivo, all five GhFD proteins interacted with Gh14-3-3 and GhFT in the nucleus. GhFT, 14-3-3 and all the GhFDs interacted in the nucleus as well, suggesting that they formed a ternary complex. Virus-induced silencing of GhFD1, -2 and -4 in cotton delayed flowering and inhibited the expression of floral meristem identity genes. Silencing GhFD3 strongly decreased lateral root formation, suggesting a function in lateral root development. GhFD overexpression in Arabidopsis and transcriptional activation assays suggested that FACs containing GhFD1 and GhFD2 function mainly in promoting flowering with partial functional redundancy. Moreover, GhFD3 was specifically expressed in lateral root meristems and dominantly activated the transcription of auxin response factor genes, such as ARF19. Thus, the diverse functions of FACs may depend on the recruited GhFD. Creating targeted genetic mutations in the florigen system using Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) genome editing may fine-tune flowering and improve plant architecture.


Assuntos
Proteínas 14-3-3/genética , Florígeno/metabolismo , Gossypium/fisiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Proteínas 14-3-3/metabolismo , Gossypium/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
4.
BMC Plant Biol ; 21(1): 162, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789593

RESUMO

BACKGROUND: In plants, 14-3-3 proteins, also called GENERAL REGULATORY FACTORs (GRFs), encoded by a large multigene family, are involved in protein-protein interactions and play crucial roles in various physiological processes. No genome-wide analysis of the GRF gene family has been performed in cotton, and their functions in flowering are largely unknown. RESULTS: In this study, 17, 17, 31, and 17 GRF genes were identified in Gossypium herbaceum, G. arboreum, G. hirsutum, and G. raimondii, respectively, by genome-wide analyses and were designated as GheGRFs, GaGRFs, GhGRFs, and GrGRFs, respectively. A phylogenetic analysis revealed that these proteins were divided into ε and non-ε groups. Gene structural, motif composition, synteny, and duplicated gene analyses of the identified GRF genes provided insights into the evolution of this family in cotton. GhGRF genes exhibited diverse expression patterns in different tissues. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that the GhGRFs interacted with the cotton FLOWERING LOCUS T homologue GhFT in the cytoplasm and nucleus, while they interacted with the basic leucine zipper transcription factor GhFD only in the nucleus. Virus-induced gene silencing in G. hirsutum and transgenic studies in Arabidopsis demonstrated that GhGRF3/6/9/15 repressed flowering and that GhGRF14 promoted flowering. CONCLUSIONS: Here, 82 GRF genes were identified in cotton, and their gene and protein features, classification, evolution, and expression patterns were comprehensively and systematically investigated. The GhGRF3/6/9/15 interacted with GhFT and GhFD to form florigen activation complexs that inhibited flowering. However, GhGRF14 interacted with GhFT and GhFD to form florigen activation complex that promoted flowering. The results provide a foundation for further studies on the regulatory mechanisms of flowering.


Assuntos
Proteínas 14-3-3/genética , Flores/crescimento & desenvolvimento , Genes de Plantas , Gossypium/genética , Família Multigênica , Proteínas de Plantas/genética , Proteínas 14-3-3/metabolismo , Flores/genética , Gossypium/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/metabolismo
5.
Int J Mol Sci ; 20(19)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561427

RESUMO

Flowering transition is a crucial development process in cotton (Gossypium hirsutum L.), and the flowering time is closely correlated with the timing of FLOWERING LOCUS T (FT) expression. However, the mechanism underlying the coordination of various cis-regulatory elements in the FT promoter of cotton has not been determined. In this study, a 5.9-kb promoter of FT was identified from cotton. A bioinformatics analysis showed that multiple insertion-deletion sites existed in the 5.9-kb promoter. Different expression levels of a reporter gene, and the induction by sequential deletions in GhFT promoter, demonstrated that 1.8-kb of the GhFT promoter was stronger than 4.2-, 4.8-, and 5.9-kb promoter fragments. The binding sites of the CONSTANS (CO) and NUCLEAR FACTOR Y transcription factors were located within the 1.0-kb sequence upstream of the FT transcription start site. A large number of repeat segments were identified in proximal promoter regions (-1.1 to -1.4 kb). A complementation analysis of deletion constructs between 1.0 and 1.8 kb of G. hirsutum, Gossypium arboretum, and Gossypium raimondii FT promoters revealed that the 1.0-kb fragment significantly rescued the late-flowering phenotype of the Arabidopsis FT loss-of-function mutant ft-10, whereas the 1.8-kb promoter only slightly rescued the late-flowering phenotype. Furthermore, the conserved CORE motif in the cotton FT promoter is an atypical TGTG(N2-3)ATG, but the number of arbitrary bases between TGTG and ATG is uncertain. Thus, the proximal FT promoter region might play an important role affecting the activity levels of FT promoters in cotton flowering.


Assuntos
Flores/genética , Gossypium/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Sequência de Bases , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Plantas Geneticamente Modificadas , Fatores de Transcrição/química , Transcriptoma
6.
Front Oncol ; 13: 1298793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38115903

RESUMO

Atypical lobular endocervical glandular hyperplasia (ALEGH) is considered a precancerous lesion of gastric-type adenocarcinoma (GAS)/minimal deviation adenocarcinoma (MDA) characterized by an insidious onset, atypical symptoms, and often negative human papillomavirus (HPV) screening. Early screening for this disease is challenging, leading to a high rate of missed clinical diagnoses and the development of malignant tumors at the onset. Increased vaginal discharge and the presence of imaging cystic masses at the internal cervical ostium are often observed in patients with ALEGH. Therefore, we reviewed the clinical data of two cases of ALEGH that were identified and diagnosed in the early stages at our hospital. Through a comprehensive analysis of the medical history and diagnosis plan, combined with a review of relevant literature, to improve the early recognition and diagnosis of ALEGH, as well as strengthen the management of cervical precancerous lesions.

7.
Eur J Med Chem ; 254: 115327, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37098307

RESUMO

Targeting histone deacetylase 6 (HDAC6) has emerged as a promising therapeutic approach for anti-inflammation and related biological pathways, including inflammatory events associated with the brain. In this study, in order to develop brain-permeable HDAC6 inhibitors for anti-neuroinflammation, we report here the design, synthesis, and characterization of a number of N-heterobicyclic analogues that can inhibit HDAC6 with high specificity and strong potency. Among our analogues, PB131 exhibits potent binding affinity and selectivity against HDAC6, with an IC50 value of 1.8 nM and more than 116-fold selectivity over other HDAC isoforms. In addition, PB131 shows good brain penetration, binding specificity, and reasonable biodistribution through our positron emission tomography (PET) imaging studies of [18F]PB131 in mice. Furthermore, we characterized the efficacy of PB131 on regulating neuroinflammation using the mouse microglia model BV2 cells in vitro and the LPS-induced inflammation mouse model in vivo. These data not only indicate the anti-inflammatory activity of our novel HDAC6 inhibitor PB131, but also strengthen the biological functions of HDAC6 and further extend the therapeutic approach inhibiting HDAC6. Our findings show that PB131 displays good brain permeability, high specificity, and strong potency toward inhibiting HDAC6 and is a potential HDAC6 inhibitor for inflammation-related disease treatment, especially neuroinflammation.


Assuntos
Encéfalo , Inibidores de Histona Desacetilases , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Encéfalo/metabolismo , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/química , Distribuição Tecidual
8.
J Med Chem ; 66(23): 16075-16090, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37972387

RESUMO

Recent studies have shown that the epigenetic protein histone deacetylase 11 (HDAC11) is highly expressed in the brain and critically modulates neuroimmune functions, making it a potential therapeutic target for neurological disorders. Herein, we report the development of PB94, which is a novel HDAC11 inhibitor. PB94 exhibited potency and selectivity against HDAC11 with IC50 = 108 nM and >40-fold selectivity over other HDAC isoforms. Pharmacokinetic/pharmacodynamic evaluation indicated that PB94 possesses promising drug-like properties. Additionally, PB94 was radiolabeled with carbon-11 as [11C]PB94 for positron emission tomography (PET), which revealed significant brain uptake and metabolic properties suitable for drug development in live animals. Furthermore, we demonstrated that neuropathic pain was associated with brain upregulation of HDAC11 and that pharmacological inhibition of HDAC11 by PB94 ameliorated neuropathic pain in a mouse model. Collectively, our findings support further development of PB94 as a selective HDAC11 inhibitor for neurological indications, including pain.


Assuntos
Neuralgia , Doenças Neuroinflamatórias , Animais , Camundongos , Encéfalo/metabolismo , Histona Desacetilases/metabolismo , Neuralgia/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico
9.
MedComm (2020) ; 4(3): e269, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37250145

RESUMO

Lysine-specific histone demethylase 1 (LSD1) is an attractive target for malignancies therapy. Nevertheless, its role in hepatocellular carcinoma (HCC) progression and the potential of its inhibitor in HCC therapy remains unclear. Here, we show that LSD1 overexpression in human HCC tissues is associated with HCC progression and poor patient survival. ZY0511, a highly selective and potent inhibitor of LSD1, suppressed human HCC cell proliferation in vitro and tumor growth in cell-derived and patient-derived HCC xenograft models in vivo. Mechanistically, ZY0511 induced mRNA expression of growth arrest and DNA damage-inducible gene 45beta (GADD45B) by inducing histone H3 at lysine 4 (H3K4) methylation at the promoter of GADD45B, a novel target gene of LSD1. In human HCC tissues, LSD1 level was correlated with a decreased level of GADD45B, which was associated with HCC progression and predicted poor patient survival. Moreover, co-administration of ZY0511 and DTP3, which specifically enhanced the pro-apoptotic effect of GADD45B, effectively inhibited HCC cell proliferation both in vitro and in vivo. Collectively, our study revealed the potential value of LSD1 as a promising target of HCC therapy. ZY0511 is a promising candidate for HCC therapy through upregulating GADD45B, thereby providing a novel combinatorial strategy for treating HCC.

10.
Nat Commun ; 14(1): 7430, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973845

RESUMO

Poly (ADP-ribose) polymerase inhibitors (PARPi) are selectively active in ovarian cancer (OC) with homologous recombination (HR) deficiency (HRD) caused by mutations in BRCA1/2 and other DNA repair pathway members. We sought molecular targeted therapy that induce HRD in HR-proficient cells to induce synthetic lethality with PARPi and extend the utility of PARPi. Here, we demonstrate that lysine-specific demethylase 1 (LSD1) is an important regulator for OC. Importantly, genetic depletion or pharmacological inhibition of LSD1 induces HRD and sensitizes HR-proficient OC cells to PARPi in vitro and in multiple in vivo models. Mechanistically, LSD1 inhibition directly impairs transcription of BRCA1/2 and RAD51, three genes essential for HR, dependently of its canonical demethylase function. Collectively, our work indicates combination with LSD1 inhibitor could greatly expand the utility of PARPi to patients with HR-proficient tumor, warranting assessment in human clinical trials.


Assuntos
Proteína BRCA1 , Neoplasias Ovarianas , Humanos , Feminino , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Regulação para Baixo , Reparo do DNA , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Recombinação Homóloga , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
11.
Med Oncol ; 38(10): 124, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34491469

RESUMO

Lysine-specific demethylase 1 (LSD1, also known as KDM1A) is an attractive agent for treatment of cancer. However, the anti-tumor effect of LSD1 inhibitors against diffuse large B-cell lymphoma (DLBCL) and the underlying mechanism are still unclear. Here, we report that KDM1A is overexpressed in human DLBCL tissues and negatively related to overall survival rate of DLBCL patients. ZY0511, a novel and potent LSD1 inhibitor developed by our group, inhibited the proliferation of human DLBCL cells. ZY0511 interacted with LSD1, induced methylation level of histone 3 lysine 4 and histone 3 lysine 9 in DLBCL cells. Mechanistically, transcriptome sequencing results indicated that ZY0511 induced the genes enrichment significantly related to cell cycle, autophagy, and apoptosis signaling pathways. Further study confirmed that ZY0511 blocked cell cycle at G0/G1 phase and expression of CDK4 and cyclin D1. ZY0511 decreased mitochondrial membrane potential and induced apoptosis, which can be reverted by a pan-caspase inhibitor, Z-VAD-FMK. Moreover, ZY0511 treatment significantly increased autophagy-associated marker proteins and autophagosomes formation in DLBCL cells. In vivo xenograft experiments confirmed that intraperitoneal administration of ZY0511 significantly suppressed SU-DHL-6 xenograft tumor growth in vivo. In conclusion, our findings identify that ZY0511 inhibits DLBCL growth both in vitro and in vivo via the induction of apoptosis and autophagy, and LSD1 inhibitor might be a promising strategy for treating DLBCL.


Assuntos
Antineoplásicos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Hidrazinas/farmacologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Morfolinas/farmacologia , Sulfonas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Metab ; 9(1): 22, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971967

RESUMO

Human dihydroorotate dehydrogenase (DHODH) is a flavin-dependent mitochondrial enzyme catalyzing the fourth step in the de novo pyrimidine synthesis pathway. It is originally a target for the treatment of the non-neoplastic diseases involving in rheumatoid arthritis and multiple sclerosis, and is re-emerging as a validated therapeutic target for cancer therapy. In this review, we mainly unravel the biological function of DHODH in tumor progression, including its crucial role in de novo pyrimidine synthesis and mitochondrial respiratory chain in cancer cells. Moreover, various DHODH inhibitors developing in the past decades are also been displayed, and the specific mechanism between DHODH and its additional effects are illustrated. Collectively, we detailly discuss the association between DHODH and tumors in recent years here, and believe it will provide significant evidences and potential strategies for utilizing DHODH as a potential target in preclinical and clinical cancer therapies.

13.
J Mot Behav ; 52(5): 578-589, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31451042

RESUMO

Previous studies have demonstrated that when perceiving the actions of another agent, individuals will automatically imitate those observed actions. This study investigated how children's imitation of physical actions was influenced by either visually neutral or visually dangerous information. Participants were presented with a series of pictures in which an agent was reaching towards either a neutral object or a dangerous object. Results showed that the imitation effect occurred when the agent was observed reaching and grasping a neutral object. However, this effect was not present when the agent's hand was observed reaching towards or grasping, the non-handle side of a dangerous object. These results suggest children can predict potential behavioral consequences and adjust their imitative action depending on the perceived danger of the action.


Assuntos
Comportamento Perigoso , Comportamento Imitativo/fisiologia , Estimulação Luminosa , Criança , Feminino , Mãos , Força da Mão , Humanos , Masculino , Percepção , Adulto Jovem
14.
Am J Cancer Res ; 10(9): 2993-3036, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042631

RESUMO

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide. In the past decade, there have been improvements in non-drug therapies and drug therapies for HCC treatment. Non-drug therapies include hepatic resection, liver transplantation, transarterial chemoembolization (TACE) and ablation. The former two surgical treatments are beneficial for patients with early and mid-stage HCC. As the first choice for non-surgical treatment, different TACE methods has been developed and widely used in combination therapy. Ablation has become an important alternative therapy for the treatment of small HCC or cases of unresectable surgery. Meanwhile, the drugs including small molecule targeted drugs like sorafenib and lenvatinib, monoclonal antibodies such as nivolumab are mainly used for the systematic treatment of advanced HCC. Besides strategies described above are recommended as first-line therapies due to their significant increase in mean overall survival, there are also potential drugs in clinical trials or under preclinical development. In addition, a number of potential preclinical surgical or adjuvant therapies are being studied, such as oncolytic virus, mesenchymal stem cells, biological clock, gut microbiome composition and peptide vaccine, all of which have shown different degrees of inhibition on HCC. With some potential anti-HCC drugs being reported, many promising therapeutic targets in related taxonomic signaling pathways including cell cycle, epigenetics, tyrosine kinase and so on that affect the progression of HCC have also been found. Together, the rational application of existing therapies and drugs as well as the new strategies will bring a bright future for the global cure of HCC in the coming decades.

15.
Cell Death Dis ; 11(4): 267, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327627

RESUMO

Metabolic interaction between cancer-associated fibroblasts (CAFs) and colorectal cancer (CRC) cells plays a major role in CRC progression. However, little is known about lipid alternations in CAFs and how these metabolic reprogramming affect CRC cells metastasis. Here, we uncover CAFs conditioned medium (CM) promote the migration of CRC cells compared with normal fibroblasts CM. CAFs undergo a lipidomic reprogramming, and accumulate more fatty acids and phospholipids. CAFs CM after protein deprivation still increase the CRC cells migration, which suggests small molecular metabolites in CAFs CM are responsible for CRC cells migration. Then, we confirm that CRC cells take up the lipids metabolites that are secreted from CAFs. Fatty acids synthase (FASN), a crucial enzyme in fatty acids synthesis, is significantly increased in CAFs. CAF-induced CRC cell migration is abolished by knockdown of FASN by siRNA or reducing the uptake of fatty acids by CRC cells by sulfo-N-succinimidyloleate sodium in vitro and CD36 monoclonal antibody in vivo. To conclude, our results provide a new insight into the mechanism of CRC metastasis and suggest FASN of CAFs or CD36 of CRC cells may be potential targets for anti-metastasis treatment in the future.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Neoplasias Colorretais/genética , Metabolismo dos Lipídeos/fisiologia , Movimento Celular , Neoplasias Colorretais/metabolismo , Humanos , Microambiente Tumoral
16.
J Med Chem ; 63(14): 7633-7652, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32496056

RESUMO

Human dihydroorotate dehydrogenase (hDHODH) is an attractive target for cancer therapy. Based on its crystal structure, we designed and synthesized a focused compound library containing the structural moiety of 1,4-benzoquinone, which possesses reactive oxygen species (ROS) induction capacity. Compound 3s with a naphtho[2,3-d][1,2,3]triazole-4,9-dione scaffold exhibited inhibitory activity against hDHODH. Further optimization led to compounds 11k and 11l, which inhibited hDHODH activity with IC50 values of 9 and 4.5 nM, respectively. Protein-ligand cocrystal structures clearly depicted hydrogen bond and hydrophobic interactions of 11k and 11l with hDHODH. Compounds 11k and 11l significantly inhibited leukemia cell and solid tumor cell proliferation and induced ROS production, mitochondrial dysfunction, apoptosis, and cell cycle arrest. Nanocrystallization of compound 11l displayed significant in vivo antitumor effects in the Raji xenograft model. Overall, this study provides a novel bifunctional compound 11l with hDHODH inhibition and ROS induction efficacy, which represents a promising anticancer lead worthy of further exploration.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Naftoquinonas/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Triazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Di-Hidro-Orotato Desidrogenase , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Feminino , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos SCID , Simulação de Acoplamento Molecular , Estrutura Molecular , Naftoquinonas/síntese química , Naftoquinonas/metabolismo , Naftoquinonas/farmacocinética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Ligação Proteica , Ratos Sprague-Dawley , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/metabolismo , Triazóis/farmacocinética
17.
PLoS One ; 14(4): e0215771, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31002698

RESUMO

Plant phosphatidylethanolamine-binding protein (PEBP) is comprised of three clades: FLOWERING LOCUS T (FT), TERMINAL FLOWER1 (TFL1) and MOTHER OF FT AND TFL1 (MFT). FT/TFL1-like clades regulate identities of the determinate and indeterminate meristems, and ultimately affect flowering time and plant architecture. MFT is generally considered to be the ancestor of FT/TFL1, but its function is not well understood. Here, two MFT homoeologous gene pairs in Gossypium hirsutum, GhMFT1-A/D and GhMFT2-A/D, were identified by genome-wide identification of MFT-like genes. Detailed expression analysis revealed that GhMFT1 and GhMFT2 homoeologous genes were predominately expressed in ovules, and their expression increased remarkably during ovule development but decreased quickly during seed germination. Expressions of GhMFT1 and GhMFT2 homoeologous genes in germinating seeds were upregulated in response to abscisic acid (ABA), and their expressions also responded to gibberellin (GA). In addition, ectopic overexpression of GhMFT1 and GhMFT2 in Arabidopsis inhibited seed germination at the early stage. Gene transcription analysis showed that ABA metabolism genes ABA-INSENSITIVE3 (ABI3) and ABI5, GA signal transduction pathway genes REPRESSOR OF ga1-3 (RGA) and RGA-LIKE2 (RGL2) were all upregulated in the 35S:GhMFT1 and 35S:GhMFT2 transgenic Arabidopsis seeds. GhMFT1 and GhMFT2 localize in the cytoplasm and nucleus, and both interact with a cotton bZIP transcription factor GhFD, suggesting that both of GhMFT1, 2 have similar intracellular regulation mechanisms. Taken together, the results suggest that GhMFT1 and GhMFT2 may act redundantly and differentially in the regulation of seed germination.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Gossypium/genética , Proteínas de Plantas/genética , Sementes/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Sequência de Bases , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Psychol Res Behav Manag ; 12: 375-384, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191058

RESUMO

Background: Spatial attention could enhance the neural activities of attended locations in human visual cortex. As a salient stimulus, emotional image could enhance the responses in amygdala and visual areas. However, few studies examined the interaction of the attentional effects induced by emotional stimuli and spatial cues on the neural responses in visual areas. Methods: In the present study, we used functional magnetic resonance imaging (fMRI) to examine the combined and separated effects of emotional image and spatial cue on the activities in human visual areas. A revised Posner cueing paradigm was utilized. Each participant viewed a fearful image and a peaceful image simultaneously in left and right visual fields. A spatial cue of two dots was then presented in one of the image positions. In this manner, the attentional effects for emotional image and spatial cue could be isolated and combined. Results: The results showed that spatial cue enhanced the responses in V4, intraparietal sulcus (IPS) and lateral occipital area (LO), while emotional image could enhance the responses in V3, V4 and LO. Importantly, no significant interactions were found in any of the visual areas. Conclusion: Our results indicate that the two kinds of attentional modulation might not be affected by each other. These findings shed light on the neural mechanism of the emotional attention.

19.
Biol Psychol ; 133: 72-78, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29426017

RESUMO

How déjà vu works has long been a mystery, partially because of its characteristics of unpredictable occurrences and quick disappearances, which make it difficult to be explored. Previous studies have described the anatomical structures underlying déjà vu in healthy subjects; however, the functional mechanism of déjà vu remains unclear. Therefore, this study investigated the brain structural and functional components underlying déjà vu by combining voxel-based morphometry analysis (VBM) with resting-state functional connectivity (rsFC). The VBM analysis revealed that the anterior parahippocampal gyrus (PHG) had significantly less grey matter volume (GMV) in high déjà vu group than low group, confirming previous studies. Further functional connectivity analysis revealed that the frequency of déjà vu experiences was negatively correlated with the strength of the rsFC between anterior dorsal lateral prefrontal cortex (DLPFC) and anterior PHG but positively correlated with the strength of the rsFC between posterior DLPFC and posterior PHG. Moreover, the frequency of déjà vu experiences was negatively correlated with the strength of the rsFC between the anterior and posterior regions of the PHG. These findings indicated that familiarity without recollection (PHG) and superior context monitoring (DLPFC) are critical for real-life déjà vu experiences.


Assuntos
Déjà Vu/psicologia , Substância Cinzenta/patologia , Hipocampo/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Reconhecimento Psicológico , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Tamanho do Órgão , Adulto Jovem
20.
Eur J Pharmacol ; 820: 198-205, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29233659

RESUMO

Klotho, an aging-suppressor gene, encodes a protein that potentially acts as a neuroprotective factor. Our previous studies showed that ligustilide minimizes the cognitive dysfunction and brain damage induced by cerebral ischemia; however, the underlying mechanisms remain unclear. This study aims to investigate whether klotho is involved in the protective effects of ligustilide against cerebral ischemic injury in mice. Cerebral ischemia was induced by bilateral common carotid arterial occlusion. Neurobehavioral tests as well as Nissl and Fluoro-Jade B staining were used to evaluate the protective effects of ligustilide in cerebral ischemia, and Western blotting and ELISA approaches were used to investigate the underlying mechanisms. Administration of ligustilide prevented the development of neurological deficits and reduced neuronal loss in the hippocampal CA1 region and the caudate putamen after cerebral ischemia. The protective effects were associated with inhibition of the RIG-I/NF-κB p65 and Akt/FoxO1 pathways and with prevention of inflammation and oxidative stress in the brain. Further, downregulation of klotho could attenuate the neuroprotection of ligustilide against cerebral ischemic injury. Ligustilide exerted neuroprotective effects in mice after cerebral ischemia by regulating anti-inflammatory and anti-oxidant signaling pathways. Furthermore, klotho upregulation contributes to the neuroprotection of LIG against cerebral ischemic injury. These results indicated that ligustilide may be a promising therapeutic agent for the treatment of cerebral ischemia.


Assuntos
4-Butirolactona/análogos & derivados , Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevenção & controle , Glucuronidase/metabolismo , Fármacos Neuroprotetores/farmacologia , Regulação para Cima/efeitos dos fármacos , 4-Butirolactona/farmacologia , Animais , Isquemia Encefálica/patologia , Células HEK293 , Humanos , Proteínas Klotho , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA