Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 43(16): 3235-3242, 2018 Aug.
Artigo em Zh | MEDLINE | ID: mdl-30200724

RESUMO

Traditional Chinese medicine(TCM) has been increasingly used in the prevention and treatment of obesity and obesity-related diseases. However, its mechanism of action is not yet clear. In recent years, with the development of high-throughput sequencing technology, scientific researches have found that the disorder of gut microbiota is associated with obesity and other diseases. Furthermore, it has been found that TCM can improve the structure of gut microbiota by increasing probiotics and reducing pathogens, which play an importent role in preventing the development and progression of obesity and other diseases. This article first explores the possible association between intestinal microbiota and obesity. Then, it reviews the traditional Chinese medicine and its role in regulating intestinal microbiota for the prevention and treatment of diseases, including obesity and inflammation, insulin resistance, type 2 diabetes, non-alcoholic fatty liver disease, inflammatory bowel disease and other diseases, in theexpectation of new strategies and research direction for treating obesity and relevant diseases, and providing important guidance for further studies in this field in the future.


Assuntos
Microbioma Gastrointestinal , Medicina Tradicional Chinesa , Obesidade/terapia , Diabetes Mellitus Tipo 2/terapia , Humanos , Inflamação/terapia , Doenças Inflamatórias Intestinais/terapia , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica/terapia
2.
Oncol Lett ; 7(6): 1785-1789, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24932233

RESUMO

Normal mammalian terminal erythroid differentiation is a precisely regulated process during which the progenitor cells execute particular programs to form a mature erythrocytic phenotype. In the present study, it was found that RbAp48, a histone-binding protein associated with retinoblastoma protein, was upregulated during terminal erythroid maturation in vivo and in vitro. This indicated that RbAp48, at least in part, participated in the regulation of murine erythropoiesis. Following sodium butyrate (SB) induction, murine erythroleukemia (MEL) cells began to re-enter erythroid differentiation and the ratio of differentiated cells reached ~80% at 72 h. The erythroid maturation-related mRNA expression of α-globin, ß-globin and glycophorin A (GPA) was increased markedly, which indicated that SB induced MEL differentiation. During MEL differentiation, the RbAp48 level showed a 1.5-fold increase at 72 h, and the globin transcription factor (GATA)-1 level was also upregulated in the early stage of differentiation. By contrast, the c-Myc level was gradually downregulated in MEL differentiation. Using an immunofluorescence assay, the results of the study directly showed that the average fluorescence intensity of RbAp48 in each cell reached an almost 1.7-fold increase at 72 and 96 h. This was consistent with the western blot results of RbAp48 during MEL differentiation. In addition, reduced expression of RbAp48 by RNA inference decreased SB-induced MEL differentiation by ~20%, indicating that a high level of RbAp48 was essential for MEL differentiation. Taken together, these results established a functional link between RbAp48 and erythroid differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA