RESUMO
Bipolar disorder is a chronic neuropsychiatric condition associated with mood instability, where patients present significant sleep and circadian rhythm abnormalities. Currently, the pathophysiology of bipolar disorder remains elusive, but treatment with lithium continues as the benchmark pharmacotherapy, functioning as a potent mood stabilizer in most, but not all patients. Lithium is well documented to induce period lengthening and amplitude enhancement of the circadian clock. Based on this, we sought to investigate whether lithium differentially impacts circadian rhythms in bipolar patient cell lines and crucially if lithium's effect on the clock is fundamental to its mood-stabilizing effects. We analyzed the circadian rhythms of bipolar patient-derived fibroblasts (n = 39) and their responses to lithium and three further chronomodulators. Here we show, relative to controls (n = 23), patients exhibited a wider distribution of circadian period (p < 0.05), and that patients with longer periods were medicated with a wider range of drugs, suggesting lower effectiveness of lithium. In agreement, patient fibroblasts with longer periods displayed muted circadian responses to lithium as well as to other chronomodulators that phenocopy lithium. These results show that lithium differentially impacts the circadian system in a patient-specific manner and its effect is dependent on the patient's circadian phenotype. We also found that lithium-induced behavioral changes in mice were phenocopied by modulation of the circadian system with drugs that target the clock, and that a dysfunctional clock ablates this response. Thus, chronomodulatory compounds offer a promising route to a novel treatment paradigm. These findings, upon larger-scale validation, could facilitate the implementation of a personalized approach for mood stabilization.
Assuntos
Transtorno Bipolar , Lítio , Animais , Transtorno Bipolar/tratamento farmacológico , Ritmo Circadiano , Fibroblastos , Humanos , Compostos de Lítio/farmacologia , CamundongosRESUMO
We have optimised a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of SARS-CoV-2 from extracted RNA for clinical application. We improved the stability and reliability of the RT-LAMP assay by the addition of a temperature-dependent switch oligonucleotide to reduce self- or off-target amplification. We then developed freeze-dried master mix for single step RT-LAMP reaction, simplifying the operation for end users and improving long-term storage and transportation. The assay can detect as low as 13 copies of SARS-CoV2 RNA per reaction (25-µL). Cross reactivity with other human coronaviruses was not observed. We have applied the new RT-LAMP assay for testing clinical extracted RNA samples extracted from swabs of 72 patients in the UK and 126 samples from Greece and demonstrated the overall sensitivity of 90.2% (95% CI 83.8-94.7%) and specificity of 92.4% (95% CI 83.2-97.5%). Among 115 positive samples which Ct values were less than 34, the RT-LAMP assay was able to detect 110 of them with 95.6% sensitivity. The specificity was 100% when RNA elution used RNase-free water. The outcome of RT-LAMP can be reported by both colorimetric detection and quantifiable fluorescent reading. Objective measures with a digitized reading data flow would allow for the sharing of results for local or national surveillance.
Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Teste de Ácido Nucleico para COVID-19/normas , Humanos , Técnicas de Diagnóstico Molecular/normas , Técnicas de Amplificação de Ácido Nucleico/normas , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Alterations in environmental light and intrinsic circadian function have strong associations with mood disorders. The neural origins underpinning these changes remain unclear, although genetic deficits in the molecular clock regularly render mice with altered mood-associated phenotypes. METHODS: A detailed circadian and light-associated behavioral characterization of the Na+/K+-ATPase α3 Myshkin (Myk/+) mouse model of mania was performed. Na+/K+-ATPase α3 does not reside within the core circadian molecular clockwork, but Myk/+ mice exhibit concomitant disruption in circadian rhythms and mood. The neural basis of this phenotype was investigated through molecular and electrophysiological dissection of the master circadian pacemaker, the suprachiasmatic nuclei (SCN). Light input and glutamatergic signaling to the SCN were concomitantly assessed through behavioral assays and calcium imaging. RESULTS: In vivo assays revealed several circadian abnormalities including lengthened period and instability of behavioral rhythms, and elevated metabolic rate. Grossly aberrant responses to light included accentuated resetting, accelerated re-entrainment, and an absence of locomotor suppression. Bioluminescent recording of circadian clock protein (PERIOD2) output from ex vivo SCN revealed no deficits in Myk/+ molecular clock function. Optic nerve crush rescued the circadian period of Myk/+ behavior, highlighting that afferent inputs are critical upstream mediators. Electrophysiological and calcium imaging SCN recordings demonstrated changes in the response to glutamatergic stimulation as well as the electrical output indicative of altered retinal input processing. CONCLUSIONS: The Myshkin model demonstrates profound circadian and light-responsive behavioral alterations independent of molecular clock disruption. Afferent light signaling drives behavioral changes and raises new mechanistic implications for circadian disruption in affective disorders.