Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 858(Pt 2): 159973, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347298

RESUMO

Information on temporal and spatial variations in soil greenhouse gas (GHG) fluxes from tropical peat forests is essential to predict the influence of climate change and estimate the effects of land use on global warming and the carbon (C) cycle. To obtain such basic information, soil carbon dioxide (CO2) and methane (CH4) fluxes, together with soil physicochemical properties and environmental variables, were measured at three major forest types in the Maludam National Park, Sarawak, Malaysia, for eight years, and their relationships were analyzed. Annual soil CO2 fluxes ranged from 860 to 1450 g C m⁻2 yr⁻1 without overall significant differences between the three forest sites, while soil CH4 fluxes, 1.2-10.8 g C m⁻2 yr⁻1, differed. Differences in GHG fluxes between dry and rainy seasons were not necessarily significant, corresponding to the extent of seasonal variation in groundwater level (GWL). The lack of significant differences in soil CO2 fluxes between the three sites could be attributed to set-off between the negative and positive effects of the decomposability of soil organic matter as estimated by pyrophosphate solubility index (PSI) and GWL. The impact of El-Niño on annual CO2 flux also varied between the sites. The variation in soil CH4 fluxes from the three sites was enhanced by variations in temperature, GWL, PSI, and soil iron (Fe) content. A positive correlation was observed between the annual CH4 flux and GWL at only one site, and the influence of soil properties was more pronounced at the site with the lowest GWL and the highest PSI. Variation in annual CH4 fluxes was controlled more strongly by temperature where GWL was the highest and GWL and plant growth fluctuations were the least. Inter-annual variations in soil CO2 and CH4 fluxes confirmed the importance of long-term monitoring of these at multiple sites supporting different forest types.


Assuntos
Gases de Efeito Estufa , Solo , Solo/química , Áreas Alagadas , Dióxido de Carbono/análise , Florestas , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise
3.
Sci Total Environ ; 587-588: 381-388, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28242223

RESUMO

To understand the variations in the decomposability of tropical peat soil following deforestation for an oil palm plantation, a field incubation experiment was conducted in Sarawak, Malaysia. Peat soils collected from three types of primary forest, namely Mixed Peat Swamp (MPS; Gonystylus-Dactylocladus-Neoscrotechinia association), Alan Batu (ABt; Shorea albida-Gonstylus-Strenonurus association), and Alan Bunga (ABg; Shorea albida association), were packed in polyvinyl chloride pipes and installed in an oil palm plantation. Carbon dioxide (CO2) and methane (CH4) fluxes from soil were monthly measured for 3years. Environmental variables including soil temperature, soil moisture content, and groundwater table were also monitored. The pH, loss on ignition, and total carbon (C) content were similar among the three soils, while total N content was larger in the MPS than in the ABg soils. Based on 13C nuclear magnetic resonance (NMR) spectroscopy, C composition of the MPS and ABg soils was characterized by the largest proportion of C present as alkyl C and O-alkyl C, respectively. The C composition of the ABt soil was intermediate between the MPS and ABg soils. The CO2 fluxes from the three soils ranged from 78 to 625mgCm-2h-1 with a negative correlation to groundwater level. The CH4 fluxes ranged from -67 to 653µgCm-2h-1. Both total CO2 and CH4 fluxes were larger in the order ABg>ABt>MPS (P<0.05). Annual rate of peat decomposition as was estimated from cumulative C loss differed up to 2 times, and the rate constant in exponential decay model was 0.033y-1 for the MPS soil and 0.066y-1 for the ABg soil. The field incubation results of the three forest peat soils seem to reflect the difference in the labile organic matter content, represented by polysaccharides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA