Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mutagenesis ; 32(3): 389-396, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28340109

RESUMO

Our previous results showed that in addition to the immediate interaction of ionising radiation with DNA (direct and indirect effect), low-dose and chronic low-dose rate of irradiation induce endogenous oxidative stress. During oxidative stress, free radicals react with DNA, nucleoside triphosphates (dNTPs), proteins and lipids, and modify their structures. The MYH and MTH1 genes play important roles in preventing mutations induced by 8-hydroxy-guanine, which is an oxidised product of guanine. In this study, we used short-hairpin RNA to permanently knockdown MYH and MTH1 proteins in human lymphoblastoid TK6 cells. Knockdown and wild-type cells were chronically exposed to low dose rates of γ-radiation (between 1.4 and 30 mGy/h). The cells were also subjected to acute doses delivered at a high-dose rate. Growth rate, extracellular 8-hydroxy-2'-deoxyguanosine, clonogenic cell survival and mutant frequencies were analysed in all cell types. A reduced level of cell growth and survival as well as increased mutant frequencies were observed in cells lacking both MYH and MTH1 proteins as compared to cells lacking only MYH and wild-type cells. To sum up, our results suggest that low-dose rates elevate oxidative stress. MTH1 together with MYH plays an important role in protection against mutations induced by modified dNTPs during chronic oxidative stress. In addition, we found no dose-rate effect at the level of mutations in the wild-type TK6 and MYH-KD cells. Our data interestingly indicate a dose-rate threshold for mutation induction in MTH1/MYH double knockdown cells.


Assuntos
Dano ao DNA , DNA Glicosilases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Desoxiguanosina/análogos & derivados , Raios gama , Estresse Oxidativo/efeitos da radiação , Monoéster Fosfórico Hidrolases/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , DNA/metabolismo , DNA/efeitos da radiação , Reparo do DNA , Desoxiguanosina/metabolismo , Humanos
2.
Radiat Environ Biophys ; 53(2): 417-25, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24549366

RESUMO

The aim of the present study was to analyse the dose rate effect of gamma radiation at the level of mutations, chromosomal aberrations, and cell growth in TK6 cells with normal as well as reduced levels of hMTH1 protein. TK6 cells were exposed to gamma radiation at dose rates ranging from 1.4 to 30.0 mGy/h (chronic exposure) as well as 24 Gy/h (acute exposure). Cell growth, frequency of thymidine kinase mutants, and of chromosomal aberrations in painted chromosomes 2, 8, and 14 were analysed. A decline in cell growth and an increase in unstable-type chromosomal aberrations with increasing dose rate were observed in both cell lines. A dose rate effect was not seen on mutations or stable-type chromosomal aberrations in any of the two cell lines. Reduction in the hMTH1 protein does not influence the sensitivity of TK6 cells to gamma radiation. This result fits well with data of others generated with the same cell line.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , Enzimas Reparadoras do DNA/genética , Raios gama/efeitos adversos , Mutação/efeitos da radiação , Monoéster Fosfórico Hidrolases/genética , Doses de Radiação , Transfecção , Linhagem Celular , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Clonais/citologia , Células Clonais/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos
3.
Front Biosci (Landmark Ed) ; 28(11): 296, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38062840

RESUMO

BACKGROUND: Exposure to low dose rate (LDR) radiation may accelerate aging processes. Previously, we identified numerous LDR-induced pathways involved in oxidative stress (OS) and antioxidant systems, suggesting that these pathways protect against premature senescence (PS). This study aimed to investigate if there are differences between young replicative senescent (RS) and PS cells considering DNA repair kinetics, OS, and DNA damage localized in the telomeres. METHODS: We established PS cells by culturing and passaging young primary fibroblasts exposed to LDR. Then, RS cells were established by culturing and passaging young fibroblasts until they stopped proliferating. Senescence was characterized by analyzing telomere length and senescence-associated ß-galactosidase (SA-ß-gal) staining. DNA damage and repair were evaluated with γH2AX foci formation; telomere identification was carried out using the fluorescence in situ hybridization (FISH) probe; and oxidative stress was assessed by measuring 8-oxo-dG in the medium. RESULTS: The data indicate the following: young cells have a better ability to cope with LDR-induced oxidative stress; RS and PS have higher steady-state levels of DNA damage; RS have slower DNA repair kinetics; and PS/RS have elevated levels of telomeric DNA damage. CONCLUSION: Our main conclusion is that PS and RS differ regarding DNA repair kinetics and SA-ß-gal levels.


Assuntos
Senescência Celular , Estresse Oxidativo , Humanos , Senescência Celular/genética , Hibridização in Situ Fluorescente , Dano ao DNA , Telômero/genética , Fibroblastos/metabolismo , Reparo do DNA , Radiação Ionizante
4.
Artigo em Inglês | MEDLINE | ID: mdl-36031335

RESUMO

Ionizing radiation (IR) kills cells mainly through induction of DNA damages and the surviving cells may suffer from mutations. Transgenerational effects of IR are well documented, but the exact mechanisms underlying them are less well understood; they include induction of mutations in germ cells and epigenetic inheritance. Previously, effects in the offspring of mice and zebrafish exposed to IR have been reported. A few studies also showed indications of transgenerational effects of radiation in humans, particularly in nuclear power workers. In the present project, short- and long-term effects of low-dose-rate (LDR; 50 and 97 mGy/h) and high-dose-rate (HDR; 23.4, 47.1 and 495 Gy/h) IR in Drosophila embryos were investigated. The embryos were irradiated at different doses and dose rates and radiosensitivity at different developmental stages was investigated. Also, the survival of larvae, pupae and adults developed from embryos irradiated at an early stage (30 min after egg laying) were studied. The larval crawling and pupation height assays were applied to investigate radiation effects on larval locomotion and pupation behavior, respectively. In parallel, the offspring from 3 Gy irradiated early-stage embryos were followed up to 12 generations and abnormal phenotypes were studied. Acute exposure of embryos at different stages of development showed that the early stage embryo is the most sensitive. The effects on larval locomotion showed no significant differences between the dose rates but a significant decrease of locomotion activity above 7 Gy was observed. The results indicate that embryos exposed to the low dose rates have shorter eclosion times. At the same cumulative dose (1 up to 7 Gy), HDR is more embryotoxic than LDR. We also found a radiation-induced depigmentation on males (A5 segment of the dorsal abdomen, A5pig-) that can be transmitted up to 12 generations. The phenomenon does not follow the classical Mendelian laws of segregation.


Assuntos
Drosophila , Peixe-Zebra , Animais , Relação Dose-Resposta à Radiação , Desenvolvimento Embrionário , Raios gama , Humanos , Larva , Masculino , Radiação Ionizante
5.
PLoS One ; 17(3): e0265281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286349

RESUMO

PURPOSE: The aim of this study was to explore the effects of chronic low-dose-rate gamma-radiation at a multi-scale level. The specific objective was to obtain an overall view of the endothelial cell response, by integrating previously published data on different cellular endpoints and highlighting possible different mechanisms underpinning radiation-induced senescence. MATERIALS AND METHODS: Different datasets were collected regarding experiments on human umbilical vein endothelial cells (HUVECs) which were chronically exposed to low dose rates (0, 1.4, 2.1 and 4.1 mGy/h) of gamma-rays until cell replication was arrested. Such exposed cells were analyzed for different complementary endpoints at distinct time points (up to several weeks), investigating cellular functions such as proliferation, senescence and angiogenic properties, as well as using transcriptomics and proteomics profiling. A mathematical model was proposed to describe proliferation and senescence. RESULTS: Simultaneous ceasing of cell proliferation and senescence onset as a function of time were well reproduced by the logistic growth curve, conveying shared equilibria between the two endpoints. The combination of all the different endpoints investigated highlighted a dose-dependence for prematurely induced senescence. However, the underpinning molecular mechanisms appeared to be dissimilar for the different dose rates, thus suggesting a more complex scenario. CONCLUSIONS: This study was conducted integrating different datasets, focusing on their temporal dynamics, and using a systems biology approach. Results of our analysis highlight that different dose rates have different effects in inducing premature senescence, and that the total cumulative absorbed dose also plays an important role in accelerating endothelial cell senescence.


Assuntos
Senescência Celular , Biologia de Sistemas , Células Cultivadas , Raios gama/efeitos adversos , Células Endoteliais da Veia Umbilical Humana , Humanos , Radiobiologia
6.
Environ Mol Mutagen ; 62(7): 422-427, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34296472

RESUMO

It is well-known that the cytotoxicity and mutagenic effects of high dose rate (HDR) ionizing radiation (IR) are increased by increasing the dose but less is known about the effects of chronic low dose rate (LDR). In vitro, we have shown that in addition to the immediate interaction of IR with DNA (the direct and indirect effects), low doses and chronic LDR exposure induce endogenous oxidative stress. During elevated oxidative stress, reactive oxygen species (ROS) react with DNA modifying its structure. Here, BL6 mice were exposed to IR at LDR and HDR and were then sacrificed 3 hours and 3 weeks after exposure to examine early and late effects of IR. The levels of micronuclei, MN, were determined in bone marrow cells. Our data indicate that the effects of 200 mGy on MN-induction are transient, but 500 and 1000 mGy (both HDR and LDR) lead to increased levels of MN up to 3 weeks after the exposure.


Assuntos
Células da Medula Óssea/patologia , Raios gama/efeitos adversos , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Irradiação Corporal Total/efeitos adversos , Animais , Células da Medula Óssea/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Testes para Micronúcleos
7.
Cancers (Basel) ; 12(3)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235817

RESUMO

Nearly half of all cancers are treated with radiotherapy alone or in combination with other treatments, where damage to normal tissues is a limiting factor for the treatment. Radiotherapy-induced adverse health effects, mostly of importance for cancer patients with long-term survival, may appear during or long time after finishing radiotherapy and depend on the patient's radiosensitivity. Currently, there is no assay available that can reliably predict the individual's response to radiotherapy. We profiled two study sets from breast (n = 29) and head-and-neck cancer patients (n = 74) that included radiosensitive patients and matched radioresistant controls.. We studied 55 single nucleotide polymorphisms (SNPs) in 33 genes by DNA genotyping and 130 circulating proteins by affinity-based plasma proteomics. In both study sets, we discovered several plasma proteins with the predictive power to find radiosensitive patients (adjusted p < 0.05) and validated the two most predictive proteins (THPO and STIM1) by sandwich immunoassays. By integrating genotypic and proteomic data into an analysis model, it was found that the proteins CHIT1, PDGFB, PNKD, RP2, SERPINC1, SLC4A, STIM1, and THPO, as well as the VEGFA gene variant rs69947, predicted radiosensitivity of our breast cancer (AUC = 0.76) and head-and-neck cancer (AUC = 0.89) patients. In conclusion, circulating proteins and a SNP variant of VEGFA suggest that processes such as vascular growth capacity, immune response, DNA repair and oxidative stress/hypoxia may be involved in an individual's risk of experiencing radiation-induced toxicity.

8.
JACC Basic Transl Sci ; 4(1): 72-82, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847421

RESUMO

As a consequence of the success of present-day cancer treatment, radiotherapy-induced vascular disease is emerging. This disease is caused by chronic inflammatory activation and is likely orchestrated in part by microRNAs. In irradiated versus nonirradiated conduit arteries from patients receiving microvascular free tissue transfer reconstructions, irradiation resulted in down-regulation of miR-29b and up-regulation of miR-146b. miR-29b affected inflammation and adverse wound healing through its targets pentraxin-3 and dipeptidyl-peptidase 4. In vitro and in vivo, we showed that miR-29b overexpression therapy, through inhibition of pentraxin-3 and dipeptidyl-peptidase 4, could dampen the vascular inflammatory response.

9.
Radiat Res ; 170(6): 776-83, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19138035

RESUMO

Oxidative stress occurs when the generation of reactive oxygen species (ROS) exceeds the cellular antioxidant capacity. The excess ROS react with and modify cellular components. Nucleic acid modifications are of principal interest because they may cause mutations. 8-Oxo-7,8-dihydro-2 -deoxyguanosine (8-oxo-dG) is a mutagenic lesion that can be formed by ROS in DNA as well as in the nucleotide pool. 8-Oxo-dG is removed from the DNA by base excision repair and from the nucleotide pool by the nucleotide sanitization enzyme hMTH1. hMTH1 hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, which is released to the extracellular environment and can serve as a marker of oxidative stress. The aim of this work was to establish the dose-response relationship for radiation-induced extracellular 8-oxo-dG and hMTH1 in the mGy range of gamma rays in three cellular model systems: human whole blood, human fibroblasts and stimulated lymphocytes. Extracellular 8-oxo-dG was analyzed with the use of an ELISA and hMTH1 by Western blotting. Our results demonstrate that low-dose ionizing radiation induces a stress response that leads to the formation of extracellular 8-oxo-dG and induction of hMTH1 in all three cellular model systems tested. This suggests that the nucleotide pool is an important target for radiation-induced stress response.


Assuntos
Raios gama , Nucleotídeos/metabolismo , Estresse Oxidativo/efeitos da radiação , Doses de Radiação , 8-Hidroxi-2'-Desoxiguanosina , Animais , Linhagem Celular , Enzimas Reparadoras do DNA/sangue , Enzimas Reparadoras do DNA/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/sangue , Desoxiguanosina/metabolismo , Relação Dose-Resposta à Radiação , Espaço Extracelular/metabolismo , Espaço Extracelular/efeitos da radiação , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Leucócitos/metabolismo , Leucócitos/efeitos da radiação , Linfócitos/citologia , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Monoéster Fosfórico Hidrolases/sangue , Monoéster Fosfórico Hidrolases/metabolismo
10.
Mutat Res ; 780: 55-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26295444

RESUMO

A phenomenon in which exposure to a low adapting dose of radiation makes cells more resistant to the effects of a subsequent high dose exposure is termed radio-adaptive response. Adaptive response could hypothetically reduce the risk of late adverse effects of chronic or acute radiation exposures in humans. Understanding the underlying mechanisms of such responses is of relevance for radiation protection as well as for the clinical applications of radiation in medicine. However, due to the variability of responses depending on the model system and radiation condition, there is a need to further study under what conditions adaptive response can be induced. In this study, we analyzed if there is a dose rate dependence for the adapting dose, assuming that the adapting dose induces DNA response/repair pathways that are dose rate dependent. MCF-10A cells were exposed to a 50mGy adapting dose administered acutely (0.40Gy/min) or chronically (1.4mGy/h or 4.1mGy/h) and then irradiated by high acute challenging doses. The endpoints of study include clonogenic cell survival and mutation frequency at X-linked hprt locus. In another series of experiment, cells were exposed to 100mGy and 1Gy at different dose rates (acutely and chronically) and then the mutation frequencies were studied. Adaptive response was absent at the level of clonogenic survival. The mutation frequencies were significantly decreased in the cells pre-exposed to 50mGy at 1.4mGy/h followed by 1Gy acute exposure as challenging dose. Importantly, at single dose exposures (1 Gy or 100mGy), no differences at the level of mutation were found comparing different dose rates.


Assuntos
Adaptação Fisiológica/efeitos da radiação , Dano ao DNA , Reparo do DNA/efeitos da radiação , Raios gama/efeitos adversos , Taxa de Mutação , Adaptação Fisiológica/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Reparo do DNA/genética , Relação Dose-Resposta à Radiação , Humanos , Tolerância a Radiação/efeitos da radiação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA