RESUMO
Compounds binding to the bromodomains of bromodomain and extra-terminal (BET) family proteins, particularly BRD4, are promising anticancer agents. Nevertheless, side effects and drug resistance pose significant obstacles in BET-based therapeutics development. Using high-throughput screening of a 200,000-compound library, we identified small molecules targeting a phosphorylated intrinsically disordered region (IDR) of BRD4 that inhibit phospho-BRD4 (pBRD4)-dependent human papillomavirus (HPV) genome replication in HPV-containing keratinocytes. Proteomic profiling identified two DNA damage response factors-53BP1 and BARD1-crucial for differentiation-associated HPV genome amplification. pBRD4-mediated recruitment of 53BP1 and BARD1 to the HPV origin of replication occurs in a spatiotemporal and BRD4 long (BRD4-L) and short (BRD4-S) isoform-specific manner. This recruitment is disrupted by phospho-IDR-targeting compounds with little perturbation of the global transcriptome and BRD4 chromatin landscape. The discovery of these protein-protein interaction inhibitors (PPIi) not only demonstrates the feasibility of developing PPIi against phospho-IDRs but also uncovers antiviral agents targeting an epigenetic regulator essential for virus-host interaction and cancer development.
Assuntos
Infecções por Papillomavirus , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Papillomavirus Humano , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/genética , Proteômica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Papillomaviridae/genética , Papillomaviridae/metabolismo , Proteínas Virais/genética , Replicação Viral/fisiologia , Reparo do DNA , Proteínas que Contêm BromodomínioRESUMO
The purpose of this study was to determine the effect of transplanted human mesenchymal stem cells (hMSCs) on wound healing. In this model, full-thickness cutaneous wounds were created by incision in the skin of adult New Zealand white rabbits and treated by transplanted hMSCs into the wounds. Wound healing was evaluated by histological analysis and tensiometry over time. A total of 15 New Zealand white rabbits with 10 wounds per animal were examined in this study. Animals were treated with hMSCs and euthanised at 3, 7, 14, 21 and 80 days after manipulation. The hMSCs were labelled with a fluorescent dye (CM-DiI), suspended in phosphate-buffered saline and used to treat full-thickness incisional wounds in rabbit skin. Tensiometry and histology were used to characterise the wound-healing rate of the incisional wounds. These results showed that transplanted hMSCs significantly inhibited scar formation and increased the tensile strength of the wounds. Importantly, MSCs from genetically unrelated donors did not appear to induce an immunologic response. In conclusion, human mesenchymal stem cell therapy is a viable approach to significantly affect the course of normal cutaneous wound healing and significantly increase the tensile strength.