RESUMO
Understanding how complex systems respond to change is of fundamental importance in the natural sciences. There is particular interest in systems whose classical newtonian motion becomes chaotic as an applied perturbation grows. The transition to chaos usually occurs by the gradual destruction of stable orbits in parameter space, in accordance with the Kolmogorov-Arnold-Moser (KAM) theorem--a cornerstone of nonlinear dynamics that explains, for example, gaps in the asteroid belt. By contrast, 'non-KAM' chaos switches on and off abruptly at critical values of the perturbation frequency. This type of dynamics has wide-ranging implications in the theory of plasma physics, tokamak fusion, turbulence, ion traps, and quasicrystals. Here we realize non-KAM chaos experimentally by exploiting the quantum properties of electrons in the periodic potential of a semiconductor superlattice with an applied voltage and magnetic field. The onset of chaos at discrete voltages is observed as a large increase in the current flow due to the creation of unbound electron orbits, which propagate through intricate web patterns in phase space. Non-KAM chaos therefore provides a mechanism for controlling the electrical conductivity of a condensed matter device: its extreme sensitivity could find applications in quantum electronics and photonics.
RESUMO
A theoretical study of the electronic properties, namely, electrical conductivity (EC), electronic thermal conductivity (ETC) and thermoelectric power (TEP) in 2D MoS2 monolayers (MLs), over a wide range of temperatures (10 < T < 300 K), is presented employing Boltzmann transport formalism. Considering the electrons to be scattered by screened charged impurities and the acoustic, optical and remote phonons, the transport equation is solved using Ritz iterative method. Numerical calculations of EC, ETC and TEP presented for supported and free-standing MLs with high electron concentrations, as a function of temperature, bring out the relative importance of the various scattering mechanisms operative. The role of CIs, with regard to both concentration and separation from the substrate-ML interface, in determining the properties of supported MLs is demonstrated for the first time. Validity of Wiedemann-Franz law and Mott formula are examined for supported and free standing MLs. Calculations are in consonance with recent experimental data on mobility and TEP of exfoliated SiO2-supported MoS2 ML samples. In the case of TEP it is found that though the diffusion contribution is dominant the inclusion of the drag component, incorporating contributions from all relevant phonon scattering mechanisms, is needed to obtain good agreement with the data.