RESUMO
The formulation of an effective vaccine against malaria is still a significant challenge and the induction of high anti-parasite antibody titers plus a sustained T cell response is mandatory for the success of such a vaccine. We have developed a nanoliposome-based structure which contains plasma membrane-associated proteins (PfMNP) of Plasmodium falciparum merozoites on its surface. Incorporation of parasite-derived proteins led to a significant increase in the size and dispersity of particles. Immunization of particles in BalbC and C57BL/6 mice led to high anti-MSP119 IgG titers (10(4)) after the first dose and reached a plateau (>10(6)) after the third dose. While very high titers were observed against the C-terminal domain of the vaccine candidate MSP1, only modest titers (≤10(3)) were detected against MSP2. The induced antibodies showed also a strong growth-inhibiting effect in reinvasion assays. In addition, PfMNP immunization generated antibodies which partially blocked the inflammatory response, probably by blocking TLR-induced activation of macrophages by malarial toxins such as GPI anchors. The results underline the potential of nanoliposome-based formulations as anti-malarial vaccines.