Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808669

RESUMO

Chromatin three-dimensional (3D) organization inside the cell nucleus determines the separation of euchromatin and heterochromatin domains. Their segregation results in the definition of active and inactive chromatin compartments, whereby the local concentration of associated proteins, RNA and DNA results in the formation of distinct subnuclear structures. Thus, chromatin domains spatially confined in a specific 3D nuclear compartment are expected to share similar epigenetic features and biochemical properties, in terms of accessibility and solubility. Based on this rationale, we developed the 4f-SAMMY-seq to map euchromatin and heterochromatin based on their accessibility and solubility, starting from as little as 10 000 cells. Adopting a tailored bioinformatic data analysis approach we reconstruct also their 3D segregation in active and inactive chromatin compartments and sub-compartments, thus recapitulating the characteristic properties of distinct chromatin states. A key novelty of the new method is the capability to map both the linear segmentation of open and closed chromatin domains, as well as their compartmentalization in one single experiment.

2.
Curr Top Dev Biol ; 158: 375-406, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670713

RESUMO

The proper functioning of skeletal muscles is essential throughout life. A crucial crosstalk between the environment and several cellular mechanisms allows striated muscles to perform successfully. Notably, the skeletal muscle tissue reacts to an injury producing a completely functioning tissue. The muscle's robust regenerative capacity relies on the fine coordination between muscle stem cells (MuSCs or "satellite cells") and their specific microenvironment that dictates stem cells' activation, differentiation, and self-renewal. Critical for the muscle stem cell pool is a fine regulation of chromatin organization and gene expression. Acquiring a lineage-specific 3D genome architecture constitutes a crucial modulator of muscle stem cell function during development, in the adult stage, in physiological and pathological conditions. The context-dependent relationship between genome structure, such as accessibility and chromatin compartmentalization, and their functional effects will be analysed considering the improved 3D epigenome knowledge, underlining the intimate liaison between environmental encounters and epigenetics.


Assuntos
Cromatina , Cromatina/metabolismo , Cromatina/genética , Animais , Humanos , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Diferenciação Celular , Células-Tronco/citologia , Células-Tronco/metabolismo , Epigênese Genética , Desenvolvimento Muscular , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/fisiologia
3.
Methods Mol Biol ; 2655: 125-146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37212994

RESUMO

The regulation of chromatin structure depends on a dynamic, multiple mechanisms that modulate gene expression and constitute the epigenome. The Polycomb group (PcG) of proteins are epigenetic factors involved in the transcriptional repression. Among their multilevel, chromatin-associated functions, PcG proteins mediate the establishment and maintenance of higher-order structures at target genes, allowing the transmission of transcriptional programs throughout the cell cycle.In the nucleus, PcG proteins localize close to the pericentric heterochromatin forming microscopically foci, called Polycomb bodies. Here, to visualize the tissue-specific PcG distribution in the aorta, dorsal skin and hindlimb muscles, we combine a fluorescence-activated cell sorter (FACS)-based method with an immunofluorescence staining.


Assuntos
Cromatina , Proteínas de Drosophila , Animais , Camundongos , Proteínas do Grupo Polycomb/genética , Cromatina/metabolismo , Heterocromatina/metabolismo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Músculo Esquelético/metabolismo
4.
Biomolecules ; 11(4)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917623

RESUMO

The Cdkn2a locus is one of the most studied tumor suppressor loci in the context of several cancer types. However, in the last years, its expression has also been linked to terminal differentiation and the activation of the senescence program in different cellular subtypes. Knock-out (KO) of the entire locus enhances the capability of stem cells to proliferate in some tissues and respond to severe physiological and non-physiological damages in different organs, including the heart. Emery-Dreifuss muscular dystrophy (EDMD) is characterized by severe contractures and muscle loss at the level of skeletal muscles of the elbows, ankles and neck, and by dilated cardiomyopathy. We have recently demonstrated, using the LMNA Δ8-11 murine model of Emery-Dreifuss muscular dystrophy (EDMD), that dystrophic muscle stem cells prematurely express non-lineage-specific genes early on during postnatal growth, leading to rapid exhaustion of the muscle stem cell pool. Knock-out of the Cdkn2a locus in EDMD dystrophic mice partially restores muscle stem cell properties. In the present study, we describe the cardiac phenotype of the LMNA Δ8-11 mouse model and functionally characterize the effects of KO of the Cdkn2a locus on heart functions and life expectancy.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Distrofia Muscular de Emery-Dreifuss/patologia , Animais , Apoptose , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Modelos Animais de Doenças , Loci Gênicos , Genótipo , Lamina Tipo A/deficiência , Lamina Tipo A/genética , Longevidade , Camundongos , Camundongos Knockout , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/mortalidade , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/patologia , Fenótipo , Células-Tronco/citologia , Células-Tronco/metabolismo , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA