Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 172(4): 869-880.e19, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29398116

RESUMO

The Notch signaling pathway comprises multiple ligands that are used in distinct biological contexts. In principle, different ligands could activate distinct target programs in signal-receiving cells, but it is unclear how such ligand discrimination could occur. Here, we show that cells use dynamics to discriminate signaling by the ligands Dll1 and Dll4 through the Notch1 receptor. Quantitative single-cell imaging revealed that Dll1 activates Notch1 in discrete, frequency-modulated pulses that specifically upregulate the Notch target gene Hes1. By contrast, Dll4 activates Notch1 in a sustained, amplitude-modulated manner that predominantly upregulates Hey1 and HeyL. Ectopic expression of Dll1 or Dll4 in chick neural crest produced opposite effects on myogenic differentiation, showing that ligand discrimination can occur in vivo. Finally, analysis of chimeric ligands suggests that ligand-receptor clustering underlies dynamic encoding of ligand identity. The ability of the pathway to utilize ligands as distinct communication channels has implications for diverse Notch-dependent processes.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células CHO , Proteínas de Ligação ao Cálcio , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Embrião de Galinha , Cricetulus , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligantes , Proteínas de Membrana/genética , Camundongos , Receptor Notch1/genética , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Regulação para Cima
2.
Nature ; 465(7294): 86-90, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20418862

RESUMO

The Notch-Delta signalling pathway allows communication between neighbouring cells during development. It has a critical role in the formation of 'fine-grained' patterns, generating distinct cell fates among groups of initially equivalent neighbouring cells and sharply delineating neighbouring regions in developing tissues. The Delta ligand has been shown to have two activities: it transactivates Notch in neighbouring cells and cis-inhibits Notch in its own cell. However, it remains unclear how Notch integrates these two activities and how the resulting system facilitates pattern formation. Here we report the development of a quantitative time-lapse microscopy platform for analysing Notch-Delta signalling dynamics in individual mammalian cells, with the aim of addressing these issues. By controlling both cis- and trans-Delta concentrations, and monitoring the dynamics of a Notch reporter, we measured the combined cis-trans input-output relationship in the Notch-Delta system. The data revealed a striking difference between the responses of Notch to trans- and cis-Delta: whereas the response to trans-Delta is graded, the response to cis-Delta is sharp and occurs at a fixed threshold, independent of trans-Delta. We developed a simple mathematical model that shows how these behaviours emerge from the mutual inactivation of Notch and Delta proteins in the same cell. This interaction generates an ultrasensitive switch between mutually exclusive sending (high Delta/low Notch) and receiving (high Notch/low Delta) signalling states. At the multicellular level, this switch can amplify small differences between neighbouring cells even without transcription-mediated feedback. This Notch-Delta signalling switch facilitates the formation of sharp boundaries and lateral-inhibition patterns in models of development, and provides insight into previously unexplained mutant behaviours.


Assuntos
Proteínas de Membrana/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais/fisiologia , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Receptor Notch1/genética
3.
bioRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37662208

RESUMO

The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells. Here, we used a quantitative, bottom-up, cell-based approach to systematically characterize trans-activation, cis-inhibition, and cis-activation signaling efficiencies across a range of ligand and Fringe expression levels in two mammalian cell types. Each ligand (Dll1, Dll4, Jag1, and Jag2) and receptor variant (Notch1 and Notch2) analyzed here exhibited a unique profile of interactions, Fringe-dependence, and signaling outcomes. All four ligands were able to bind receptors in cis and in trans, and all ligands trans-activated both receptors except for Jag1, which failed to activate Notch1. Cis-interactions were predominantly inhibitory, with the exception of the Dll1- and Dll4-Notch2 pairs, which exhibited cis-activation stronger than trans-activation. Lfng strengthened Delta-mediated trans-activation and weakened Jagged-mediated trans-activation for both receptors. Finally, cis-ligands showed diverse cis-inhibition strengths, which depended on the identity of the trans-ligand as well as the receptor. The map of receptor-ligand-Fringe interaction outcomes revealed here should help guide rational perturbation and control of the Notch pathway.

4.
Sci Adv ; 9(28): eadf9336, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37436981

RESUMO

Developing tissues form spatial patterns by establishing concentration gradients of diffusible signaling proteins called morphogens. The bone morphogenetic protein (BMP) morphogen pathway uses a family of extracellular modulators to reshape signaling gradients by actively "shuttling" ligands to different locations. It has remained unclear what circuits are sufficient to enable shuttling, what other patterns they can generate, and whether shuttling is evolutionarily conserved. Here, using a synthetic, bottom-up approach, we compared the spatiotemporal dynamics of different extracellular circuits. Three proteins-Chordin, Twsg, and the BMP-1 protease-successfully displaced gradients by shuttling ligands away from the site of production. A mathematical model explained the different spatial dynamics of this and other circuits. Last, combining mammalian and Drosophila components in the same system suggests that shuttling is a conserved capability. Together, these results reveal principles through which extracellular circuits control the spatiotemporal dynamics of morphogen signaling.


Assuntos
Drosophila , Endopeptidases , Animais , Ligantes , Peptídeo Hidrolases , Transdução de Sinais , Mamíferos
5.
Elife ; 82019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30628888

RESUMO

The Notch signaling pathway consists of transmembrane ligands and receptors that can interact both within the same cell (cis) and across cell boundaries (trans). Previous work has shown that cis-interactions act to inhibit productive signaling. Here, by analyzing Notch activation in single cells while controlling cell density and ligand expression level, we show that cis-ligands can also activate Notch receptors. This cis-activation process resembles trans-activation in its ligand level dependence, susceptibility to cis-inhibition, and sensitivity to Fringe modification. Cis-activation occurred for multiple ligand-receptor pairs, in diverse cell types, and affected survival in neural stem cells. Finally, mathematical modeling shows how cis-activation could potentially expand the capabilities of Notch signaling, for example enabling 'negative' (repressive) signaling. These results establish cis-activation as an additional mode of signaling in the Notch pathway, and should contribute to a more complete understanding of how Notch signaling functions in developmental, physiological, and biomedical contexts.


Assuntos
Ligantes , Células-Tronco Neurais/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Células CHO , Células CACO-2 , Proteínas de Ligação ao Cálcio/metabolismo , Cricetulus , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Modelos Teóricos , Células-Tronco Neurais/citologia , Biossíntese de Proteínas
6.
BMC Mol Biol ; 8: 98, 2007 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17971228

RESUMO

BACKGROUND: Effective and stable knockdown of multiple gene targets by RNA interference is often necessary to overcome isoform redundancy, but it remains a technical challenge when working with intractable cell systems. RESULTS: We have developed a flexible platform using RNA polymerase II promoter-driven expression of microRNA-like short hairpin RNAs which permits robust depletion of multiple target genes from a single transcript. Recombination-based subcloning permits expression of multi-shRNA transcripts from a comprehensive range of plasmid or viral vectors. Retroviral delivery of transcripts targeting isoforms of cAMP-dependent protein kinase in the RAW264.7 murine macrophage cell line emphasizes the utility of this approach and provides insight to cAMP-dependent transcription. CONCLUSION: We demonstrate functional consequences of depleting multiple endogenous target genes using miR-shRNAs, and highlight the versatility of the described vector platform for multiple target gene knockdown in mammalian cells.


Assuntos
Inativação Gênica , MicroRNAs , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Vetores Genéticos , Humanos , Isoenzimas/metabolismo , Rim/citologia , Lentivirus/genética , Macrófagos/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Plasmídeos , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Recombinação Genética , Retroviridae/genética , Transcrição Gênica , Transfecção
7.
PLoS One ; 4(2): e4559, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19238203

RESUMO

RNA interference (RNAi) was investigated with the aim of achieving gene silencing with diverse RNAi platforms that include small interfering RNA (siRNA), short hairpin RNA (shRNA) and antisense oligonucleotides (ASO). Different versions of each system were used to silence the expression of specific subunits of the heterotrimeric signal transducing G-proteins, G alpha i2 and G beta 2, in the RAW 264.7 murine macrophage cell line. The specificity of the different RNA interference (RNAi) platforms was assessed by DNA microarray analysis. Reliable RNAi methodologies against the genes of interest were then developed and applied to functional studies of signaling networks. This study demonstrates a successful knockdown of target genes and shows the potential of RNAi for use in functional studies of signaling molecules.


Assuntos
Inativação Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/genética , Animais , Pesquisa Biomédica/métodos , Linhagem Celular , Macrófagos , Métodos , Camundongos , Interferência de RNA , RNA Interferente Pequeno
8.
Proc Natl Acad Sci U S A ; 103(37): 13759-64, 2006 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-16945906

RESUMO

RNAi is proving to be a powerful experimental tool for the functional annotation of mammalian genomes. The full potential of this technology will be realized through development of approaches permitting regulated manipulation of endogenous gene expression with coordinated reexpression of exogenous transgenes. We describe the development of a lentiviral vector platform, pSLIK (single lentivector for inducible knockdown), which permits tetracycline-regulated expression of microRNA-like short hairpin RNAs from a single viral infection of any naïve cell system. In mouse embryonic fibroblasts, the pSLIK platform was used to conditionally deplete the expression of the heterotrimeric G proteins Galpha12 and Galpha13 both singly and in combination, demonstrating the Galpha13 dependence of serum response element-mediated transcription. In RAW264.7 macrophages, regulated knockdown of Gbeta2 correlated with a reduced Ca(2+) response to C5a. Insertion of a GFP transgene upstream of the Gbeta2 microRNA-like short hairpin RNA allowed concomitant reexpression of a heterologous mRNA during tetracycline-dependent target gene knockdown, significantly enhancing the experimental applicability of the pSLIK system.


Assuntos
Marcação de Genes/métodos , Terapia Genética/métodos , Vetores Genéticos/genética , Genômica/métodos , Interferência de RNA , Animais , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/farmacologia , Elemento de Resposta Sérica/genética , Tetraciclina/farmacologia , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA